Hypoglycemic Activity of Endophytic Extract of Senna Alata in STZ-Induced Diabetic Mice Model

Background: Senna alata belongs to the Senna family and is known to contain several bioactive constituents that contribute to its therapeutic properties. A variety of medicinal and pharmacological effects have been reported, including antidiabetic, antiasthma, anthelmintic, and antiplasmodium infect...

Full description

Saved in:
Bibliographic Details
Main Authors: Ogechukwu Lucy Nwankwo, Samuel J. Bunu, Omoirri Moses Aziakpono
Format: Article
Language:English
Published: Wolters Kluwer – Medknow Publications 2021-07-01
Series:Journal of Integrated Health Sciences
Subjects:
Online Access:https://journals.lww.com/10.4103/jihs.jihs_25_21
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Senna alata belongs to the Senna family and is known to contain several bioactive constituents that contribute to its therapeutic properties. A variety of medicinal and pharmacological effects have been reported, including antidiabetic, antiasthma, anthelmintic, and antiplasmodium infection effects. Objectives: The goal of the study was to determine whether the extract of S. alata can reduce blood sugar levels in streptozotocin (STZ)-induced diabetic mice. Materials and Methods: S. alata leaves were collected from the Department of Botany, University of Nigeria Nsukka, Nigeria, authenticated, and validated. Phytochemical screening was conducted. Specifically, leaf blades were extracted in 70% ethanol for 3 min, transferred to 500 ml of water for 5 min, then cut into small pieces, and then inoculated onto malt extract agar, and local rice was used to inoculate the fermentation medium. 25 male albino mice of 30–35 g weight, average weight of 30–35 g were used in the study. Streptozotocin (STZ; 65 mg/kg) was injected intravenously to induce type 2 diabetes. Results: The crude extract significantly (P < 0.05) reduced the fasting blood glucose levels in STZ-induced diabetic mice. The two doses (250 and 500 mg/kg) of the ethanol extract and metformin 500 mg/kg caused a significant (P < 0.05) reduction in the fasting blood glucose levels from 0 h to the 10th h of treatment. The extract displayed a dose-related reduction in blood sugar level concerning time. The highest reduction rate was found in 500 mg/kg 409.66 ± 1.92. The fasting blood glucose reduction was dose-dependent. The highest reduction rate was found in 500 mg/kg 80.00 ± 4.00 (80.47%) being the highest dose so far. There was a reduction in the bodyweight of the animals induced with STZ. Conclusion: The endophytic extract of S. alata displayed useful pharmacological properties and can be used to manage diabetes and its complications.
ISSN:2347-6486
2347-6494