Enhancing Uplink Communication in Wireless Powered Communication Networks Through Rate-Splitting Multiple Access and Joint Resource Optimization
Wireless powered communication networks (WPCNs) provide a sustainable solution for energy-constrained IoT devices by enabling wireless energy transfer (WET) in the downlink and wireless information transmission (WIT) in the uplink. However, their performance is often limited by interference in uplin...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/5/888 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Wireless powered communication networks (WPCNs) provide a sustainable solution for energy-constrained IoT devices by enabling wireless energy transfer (WET) in the downlink and wireless information transmission (WIT) in the uplink. However, their performance is often limited by interference in uplink communication and inefficient resource allocation. To address these challenges, we propose an RSMA-aided WPCN framework, which optimizes rate-splitting factors, power allocation, and time division to enhance spectral efficiency and user fairness. To solve this non-convex joint optimization problem, we employ the simultaneous perturbation stochastic approximation (SPSA) algorithm, a gradient-free method that efficiently estimates optimal parameters with minimal function evaluations. Compared to conventional optimization techniques, SPSA provides a scalable and computationally efficient approach for real-time resource allocation in RSMA-aided WPCNs. Our simulation results demonstrate that the proposed RSMA-aided framework improves sum throughput by 12.5% and enhances fairness by 15–20% compared to conventional multiple-access schemes. These findings establish RSMA as a key enabler for next-generation WPCNs, offering a scalable, interference-resilient, and energy-efficient solution for future wireless networks. |
|---|---|
| ISSN: | 2227-7390 |