Microstructural Evolution and Tensile Properties of Nb-V-Ti-N Microalloyed Steel with Varying Nitrogen Contents
With the rapid development of long-distance transmission pipelines for oil and natural gas, pipeline steel is continuously evolving towards higher pressure, larger diameter, and thicker wall thickness. Many extensive studies and research have been conducted on X70 pipeline steel produced through tra...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Metals |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-4701/15/3/266 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the rapid development of long-distance transmission pipelines for oil and natural gas, pipeline steel is continuously evolving towards higher pressure, larger diameter, and thicker wall thickness. Many extensive studies and research have been conducted on X70 pipeline steel produced through traditional processing routes. This study focuses on Nb-V-Ti-N microalloyed steel with different nitrogen contents, systematically investigating the variations in microstructure and tensile properties after quenching and tempering processes. The results indicate that after quenching treatment, when the nitrogen content of the tested steel is 0.0020 wt%, its primary microstructure consists of granular bainitic ferrite (GBF), acicular ferrite (AF), and residual M/A (martensite/austenite) components. As the nitrogen content increases, the contents of acicular ferrite and M/A constituents gradually rise, while granular bainitic ferrite correspondingly decreases. After tempering treatment, the microstructure of the tested steel transforms into granular bainitic ferrite, acicular ferrite, and carbonitrides. Notably, with the elevation of nitrogen content, the number of high-angle grain boundaries in the microstructure significantly increases. Meanwhile, the mean equivalent diameter (MED) defined by the misorientation angle (MTA) ranging from 2 to 15° and the dislocation density (ρ) exhibit an overall decreasing trend. Both of these factors contribute significantly to yield strength, resulting in a gradual increase in yield strength (YS) as the nitrogen content rises. Additionally, the study finds that as the nitrogen content increases, the size of precipitated particles continuously enlarges, and their proportion in the microstructure gradually increases. This discovery provides important theoretical basis and practical guidance for further optimizing the microstructure and mechanical properties of X70 pipeline steel. |
|---|---|
| ISSN: | 2075-4701 |