Solutions for nonlinear variational inequalities with a nonsmooth potential

Saved in:
Bibliographic Details
Main Authors: Michael E. Filippakis, Nikolaos S. Papageorgiou
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/S1085337504312017
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832558211353280512
author Michael E. Filippakis
Nikolaos S. Papageorgiou
author_facet Michael E. Filippakis
Nikolaos S. Papageorgiou
author_sort Michael E. Filippakis
collection DOAJ
format Article
id doaj-art-e6f5ab5aa7474eaa86757e1f9eabd465
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2004-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-e6f5ab5aa7474eaa86757e1f9eabd4652025-02-03T01:33:05ZengWileyAbstract and Applied Analysis1085-33751687-04092004-01-012004863564910.1155/S1085337504312017Solutions for nonlinear variational inequalities with a nonsmooth potentialMichael E. Filippakis0Nikolaos S. Papageorgiou1Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780, GreeceDepartment of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780, Greecehttp://dx.doi.org/10.1155/S1085337504312017
spellingShingle Michael E. Filippakis
Nikolaos S. Papageorgiou
Solutions for nonlinear variational inequalities with a nonsmooth potential
Abstract and Applied Analysis
title Solutions for nonlinear variational inequalities with a nonsmooth potential
title_full Solutions for nonlinear variational inequalities with a nonsmooth potential
title_fullStr Solutions for nonlinear variational inequalities with a nonsmooth potential
title_full_unstemmed Solutions for nonlinear variational inequalities with a nonsmooth potential
title_short Solutions for nonlinear variational inequalities with a nonsmooth potential
title_sort solutions for nonlinear variational inequalities with a nonsmooth potential
url http://dx.doi.org/10.1155/S1085337504312017
work_keys_str_mv AT michaelefilippakis solutionsfornonlinearvariationalinequalitieswithanonsmoothpotential
AT nikolaosspapageorgiou solutionsfornonlinearvariationalinequalitieswithanonsmoothpotential