Solar Particle Acceleration

High-energy particles may be accelerated widely in stellar coronae; probably by the same processes we find in the Sun. Here, we have learned of two physical mechanisms that dominate the acceleration of solar energetic particles (SEPs). The highest energies and intensities are produced in “gradual” e...

Full description

Saved in:
Bibliographic Details
Main Author: Donald V. Reames
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Astronomy
Subjects:
Online Access:https://www.mdpi.com/2674-0346/4/1/5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-energy particles may be accelerated widely in stellar coronae; probably by the same processes we find in the Sun. Here, we have learned of two physical mechanisms that dominate the acceleration of solar energetic particles (SEPs). The highest energies and intensities are produced in “gradual” events where shock waves are driven from the Sun by fast and wide coronal mass ejections (CMEs). Smaller, but more numerous “impulsive” events with unusual particle compositions are produced during magnetic reconnection in solar jets and flares. Jets provide open magnetic field lines where SEPs can escape. Closed magnetic loops contain this energy to produce bright, hot flares; perhaps even contributing to heating the low corona in profuse nanoflares. Streaming protons amplify Alfvén waves upstream of the shocks. These waves scatter and trap SEPs and, in large events, modify the element abundances and flatten the low-energy spectra upstream. Shocks also re-accelerate the residual ions from earlier impulsive events, when available, that characteristically dominate the energetic heavy-ion abundances. The large CME-driven shock waves develop an extremely wide longitudinal span, filling much of the inner heliosphere with energetic particles.
ISSN:2674-0346