Modelling the three-dimensional, diagnostic fabric anisotropy field of an ice rise
Polar ice develops anisotropic crystal orientation fabrics under deformation, yet ice is mostly modelled as an isotropic fluid. We present three-dimensional simulations of the crystal orientation fabric of Derwael Ice Rise including the surrounding ice shelf using a crystal orientation tensor evolut...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Cambridge University Press
2025-01-01
|
| Series: | Journal of Glaciology |
| Subjects: | |
| Online Access: | https://www.cambridge.org/core/product/identifier/S0022143025000140/type/journal_article |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Polar ice develops anisotropic crystal orientation fabrics under deformation, yet ice is mostly modelled as an isotropic fluid. We present three-dimensional simulations of the crystal orientation fabric of Derwael Ice Rise including the surrounding ice shelf using a crystal orientation tensor evolution equation corresponding to a fixed velocity field. We use a semi-Lagrangian numerical method that constrains the degree of crystal orientation evolution to solve the equations in complex flow areas. We perform four simulations based on previous studies, altering the rate of evolution of the crystal fabric anisotropy and its dependence on a combination of the strain rate and deviatoric stress tensors. We provide a framework for comparison with radar observations of the fabric anisotropy, outlining areas where the assumption of one vertical eigenvector may not hold and provide resulting errors in measured eigenvalues. We recognise the areas of high horizontal divergence at the ends of the flow divide as important areas to make comparisons with observations. Here, poorly constrained model parameters result in the largest difference in fabric type. These results are important in the planning of future campaigns for gathering data to constrain model parameters and as a link between observations and computationally efficient, simplified models of anisotropy. |
|---|---|
| ISSN: | 0022-1430 1727-5652 |