Low-Temperature Solution Combustion-Synthesized CuSNanoparticulated Functional Thin Films: Structural and Optoelectronic Characterization Studies
In this paper, we present a one-step low-temperature solution combustion synthesis (SCS) of CuS nanoparticulated functional films processed via a simple blade-coating technique. This SCS route uses thiourea as a fuel and sulfur source, combined with copper(II) nitrate as an oxidant and a cupric ion...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Nanoenergy Advances |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-706X/5/1/3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we present a one-step low-temperature solution combustion synthesis (SCS) of CuS nanoparticulated functional films processed via a simple blade-coating technique. This SCS route uses thiourea as a fuel and sulfur source, combined with copper(II) nitrate as an oxidant and a cupric ion source in an aprotic solvent such as non-toxic DMSO. It is hereby shown that the proposed SCS process formed a stable and completely dissolved molecular ink of thiourea and copper ion complexes, crucial for obtaining the pure crystalline phase of CuS nanoparticles (NPs). The CuS was formed by calcination at a low temperature of 200 °C during a brief annealing time of 20 min, to promote the synthesis of ~10 nm CuS NPs. The obtained CuS NPs were thoroughly analyzed in terms of structure and optoelectronic properties using various analytic and spectroscopic techniques, including TGA, XRD, FE-SEM, EDS, AFM, and four-point probe electrical resistivity measurements. The functionality of the prepared CuS nanoparticulated interlayers was evaluated by incorporating them as a hole injection layer (HIL) in Super Yellow (SY) organic light-emitting diodes (OLEDs). |
|---|---|
| ISSN: | 2673-706X |