1D nonnegative Schrodinger operators with point interactions

Let $Y$ be an infinite discrete set of points in $dR$,satisfying the condition $inf{|y-y'|,; y,y'in Y, y'ey}>0.$ In the paper we prove that the systems${delta(x-y)}_{yin Y}, ;{delta'(x-y)}_{yin Y},{delta(x-y),;delta'(x-y)}_{yin Y}$ {form Riesz} bases in the corresponding...

Full description

Saved in:
Bibliographic Details
Main Author: Yu. G. Kovalev
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2013-07-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/texts/2013/39_2/150-163.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849248214670114816
author Yu. G. Kovalev
author_facet Yu. G. Kovalev
author_sort Yu. G. Kovalev
collection DOAJ
description Let $Y$ be an infinite discrete set of points in $dR$,satisfying the condition $inf{|y-y'|,; y,y'in Y, y'ey}>0.$ In the paper we prove that the systems${delta(x-y)}_{yin Y}, ;{delta'(x-y)}_{yin Y},{delta(x-y),;delta'(x-y)}_{yin Y}$ {form Riesz} bases in the corresponding closed linear spans in the Sobolev spaces $W_2^{-1}(dR)$ and $W_2^{-2}(dR)$. As an application, we prove the transversalness of the Friedrichs and Kreui n nonnegative selfadjoint extensions of the nonnegative symmetric operators $A_0$, $A'$, and $H_0$ defined {as restrictions} of the operator $A =-frac{ d^2}{ dx^2},$ $dom (A)=W^2_2(dR)${to} the linear manifolds $dom (A_0)=left{ finW_2^2(mathbb{R})colon f(y)=0,; yin Y ight}$, $dom(A')={ gin W_2^2(mathbb{R})colon g'(y)=0,; yin Y },$ and$dom (H_0)=left{fin W_2^2(mathbb{R})colonf(y)=0,;f'(y)=0,; yin Y ight}$, respectively. Using thedivergence forms, the basic nonnegative boundary triplets for$A^*_0$, $A'^*$, and $H^*_0$ are constructed.
format Article
id doaj-art-e6585dc4cb90434ca169d400ceab50d4
institution Kabale University
issn 1027-4634
language deu
publishDate 2013-07-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-e6585dc4cb90434ca169d400ceab50d42025-08-20T03:57:59ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342013-07-013921501631D nonnegative Schrodinger operators with point interactionsYu. G. KovalevLet $Y$ be an infinite discrete set of points in $dR$,satisfying the condition $inf{|y-y'|,; y,y'in Y, y'ey}>0.$ In the paper we prove that the systems${delta(x-y)}_{yin Y}, ;{delta'(x-y)}_{yin Y},{delta(x-y),;delta'(x-y)}_{yin Y}$ {form Riesz} bases in the corresponding closed linear spans in the Sobolev spaces $W_2^{-1}(dR)$ and $W_2^{-2}(dR)$. As an application, we prove the transversalness of the Friedrichs and Kreui n nonnegative selfadjoint extensions of the nonnegative symmetric operators $A_0$, $A'$, and $H_0$ defined {as restrictions} of the operator $A =-frac{ d^2}{ dx^2},$ $dom (A)=W^2_2(dR)${to} the linear manifolds $dom (A_0)=left{ finW_2^2(mathbb{R})colon f(y)=0,; yin Y ight}$, $dom(A')={ gin W_2^2(mathbb{R})colon g'(y)=0,; yin Y },$ and$dom (H_0)=left{fin W_2^2(mathbb{R})colonf(y)=0,;f'(y)=0,; yin Y ight}$, respectively. Using thedivergence forms, the basic nonnegative boundary triplets for$A^*_0$, $A'^*$, and $H^*_0$ are constructed.http://matstud.org.ua/texts/2013/39_2/150-163.pdfpoint interactionRiesz basisboundary tripletthe Friedrichs extensionthe Krein extension
spellingShingle Yu. G. Kovalev
1D nonnegative Schrodinger operators with point interactions
Математичні Студії
point interaction
Riesz basis
boundary triplet
the Friedrichs extension
the Krein extension
title 1D nonnegative Schrodinger operators with point interactions
title_full 1D nonnegative Schrodinger operators with point interactions
title_fullStr 1D nonnegative Schrodinger operators with point interactions
title_full_unstemmed 1D nonnegative Schrodinger operators with point interactions
title_short 1D nonnegative Schrodinger operators with point interactions
title_sort 1d nonnegative schrodinger operators with point interactions
topic point interaction
Riesz basis
boundary triplet
the Friedrichs extension
the Krein extension
url http://matstud.org.ua/texts/2013/39_2/150-163.pdf
work_keys_str_mv AT yugkovalev 1dnonnegativeschrodingeroperatorswithpointinteractions