Research Progress and Future Prospects of Key Technologies for Dryland Transplanters
Seedling transplantation, a pivotal component in advancing the cultivation of vegetables and cash crops, significantly bolsters crops’ resilience against drought, cold, pests, and diseases, while substantially enhancing yields. The implementation of transplanting machinery not only remarkably allevi...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/14/8073 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Seedling transplantation, a pivotal component in advancing the cultivation of vegetables and cash crops, significantly bolsters crops’ resilience against drought, cold, pests, and diseases, while substantially enhancing yields. The implementation of transplanting machinery not only remarkably alleviates the labor-intensive nature of transplantation but also elevates the precision and uniformity of the process, thereby facilitating mechanized plant protection and harvesting operations. This article summarizes the research status and development trends of mechanized field transplanting technology and equipment. It also analyzes and summarizes the types and current status of typical representative automatic seedling picking mechanisms. Based on the current research status, the challenges of mechanized transplanting technology were analyzed, mainly the following: insufficient integration of agricultural machinery and agronomy; the standards for each stage of transplanting are not perfect; the adaptability of existing transplanting machines is poor; the level of informatization and intelligence of equipment is low; the lack of innovation in key components, such as seedling picking and transplanting mechanisms; and the proposed solutions to address the issues. Corresponding solutions are proposed, such as the following: strengthening interdisciplinary collaboration; establishing standards for transplanting processes; enhancing transplanter adaptability; accelerating intelligentization and digitalization of transplanters; strengthening the theoretical framework; and performance optimization of transplanting mechanisms. Finally, the development direction of future fully automatic transplanting machines was discussed, including the following: improving the transplanting efficiency and quality of transplanting machines; integrating research and development of testing, planting, and seedling supplementation for transplanting machines; unmanned transplanting operations; and fostering collaborative industrial development. |
|---|---|
| ISSN: | 2076-3417 |