Research on Bolt Loosening Mechanism Under Sine-on-Random Coupling Vibration Excitation

This paper primarily investigates the mechanism of bolt loosening under the Sine-on-Random (SOR) vibration excitation. Firstly, a theoretical model of bolt loosening response under the SOR synthesized excitation is established by a time–frequency conversion method, which converts the sine excitation...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiangong Du, Yuanying Qiu, Jing Li
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/2/80
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper primarily investigates the mechanism of bolt loosening under the Sine-on-Random (SOR) vibration excitation. Firstly, a theoretical model of bolt loosening response under the SOR synthesized excitation is established by a time–frequency conversion method, which converts the sine excitation into Power Spectrum Density (PSD) expression in the frequency domain and superimposes it with random vibration excitation to obtain the SOR synthesized excitation spectrum. Then, by means of a four-bolt fastened structure, the bolt loosening mechanisms under both the sine and random vibration excitation are deeply studied, respectively. Ultimately, based on the time–frequency conversion method of SOR synthesized excitation, the bolt loosening responses of the structure under SOR excitation with different tightening torques are analyzed. Furthermore, a three-stage criterion including the Steady Stage, Transition Stage, and Loosen Stage for bolt loosening under SOR excitation is revealed, and the relationship among the SOR synthesized vibration responses and the two forms of single vibration responses is explored based on a corrective energy superposition method by introducing the weight factors of the two single vibration responses under different tightening torques. Finally, test verifications for the four-bolt fastened structure are conducted and good consistencies with the results of the Finite Element Analysis (FEA) are shown. This study provides valuable insights into the detection and prevention of loosening in bolted connection structures under multi-source vibration environments and has important engineering reference significance.
ISSN:2075-1702