Magnetocaloric Effect for a <i>Q</i>-Clock-Type System

In this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with <i>Q</i> possible orientations, known as the “<i>Q</i>-state clock model”. When the <i>Q</i>-state clock model has <inline-formula>&...

Full description

Saved in:
Bibliographic Details
Main Authors: Michel Aguilera, Sergio Pino-Alarcón, Francisco J. Peña, Eugenio E. Vogel, Natalia Cortés, Patricio Vargas
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/1/11
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588588386091008
author Michel Aguilera
Sergio Pino-Alarcón
Francisco J. Peña
Eugenio E. Vogel
Natalia Cortés
Patricio Vargas
author_facet Michel Aguilera
Sergio Pino-Alarcón
Francisco J. Peña
Eugenio E. Vogel
Natalia Cortés
Patricio Vargas
author_sort Michel Aguilera
collection DOAJ
description In this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with <i>Q</i> possible orientations, known as the “<i>Q</i>-state clock model”. When the <i>Q</i>-state clock model has <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>≥</mo><mn>5</mn></mrow></semantics></math></inline-formula> possible configurations, it presents the famous Berezinskii–Kosterlitz–Thouless (BKT) phase associated with vortex states. We calculate the thermodynamic quantities using Monte Carlo simulations for even <i>Q</i> numbers, ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>=</mo><mn>8</mn></mrow></semantics></math></inline-formula> spin orientations per site in a lattice. We use lattices of different sizes with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mi>L</mi><mo>×</mo><mi>L</mi><mo>=</mo><msup><mn>8</mn><mn>2</mn></msup><mo>,</mo><msup><mn>16</mn><mn>2</mn></msup><mo>,</mo><msup><mn>32</mn><mn>2</mn></msup><mo>,</mo><msup><mn>64</mn><mn>2</mn></msup><mo>,</mo><mi>and</mi><mspace width="4pt"></mspace><msup><mn>128</mn><mn>2</mn></msup></mrow></semantics></math></inline-formula> sites, considering free boundary conditions and an external magnetic field varying between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mo>=</mo><mn>1.0</mn></mrow></semantics></math></inline-formula> in natural units of the system. By obtaining the entropy, it is possible to quantify the MCE through an isothermal process in which the external magnetic field on the spin system is varied. In particular, we find the values of <i>Q</i> that maximize the MCE depending on the lattice size and the magnetic phase transitions linked with the process. Given the broader relevance of the <i>Q</i>-state clock model in areas such as percolation theory, neural networks, and biological systems, where multi-state interactions are essential, our study provides a robust framework in applied quantum mechanics, statistical physics, and related fields.
format Article
id doaj-art-e625b7c0bc32406aa025aa4dcd714104
institution Kabale University
issn 1099-4300
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj-art-e625b7c0bc32406aa025aa4dcd7141042025-01-24T13:31:39ZengMDPI AGEntropy1099-43002024-12-012711110.3390/e27010011Magnetocaloric Effect for a <i>Q</i>-Clock-Type SystemMichel Aguilera0Sergio Pino-Alarcón1Francisco J. Peña2Eugenio E. Vogel3Natalia Cortés4Patricio Vargas5Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso 2373223, ChileDepartamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, ChileDepartamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, ChileDepartamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco 4811230, ChileInstituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, ChileDepartamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, ChileIn this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with <i>Q</i> possible orientations, known as the “<i>Q</i>-state clock model”. When the <i>Q</i>-state clock model has <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>≥</mo><mn>5</mn></mrow></semantics></math></inline-formula> possible configurations, it presents the famous Berezinskii–Kosterlitz–Thouless (BKT) phase associated with vortex states. We calculate the thermodynamic quantities using Monte Carlo simulations for even <i>Q</i> numbers, ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>=</mo><mn>8</mn></mrow></semantics></math></inline-formula> spin orientations per site in a lattice. We use lattices of different sizes with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>=</mo><mi>L</mi><mo>×</mo><mi>L</mi><mo>=</mo><msup><mn>8</mn><mn>2</mn></msup><mo>,</mo><msup><mn>16</mn><mn>2</mn></msup><mo>,</mo><msup><mn>32</mn><mn>2</mn></msup><mo>,</mo><msup><mn>64</mn><mn>2</mn></msup><mo>,</mo><mi>and</mi><mspace width="4pt"></mspace><msup><mn>128</mn><mn>2</mn></msup></mrow></semantics></math></inline-formula> sites, considering free boundary conditions and an external magnetic field varying between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mo>=</mo><mn>1.0</mn></mrow></semantics></math></inline-formula> in natural units of the system. By obtaining the entropy, it is possible to quantify the MCE through an isothermal process in which the external magnetic field on the spin system is varied. In particular, we find the values of <i>Q</i> that maximize the MCE depending on the lattice size and the magnetic phase transitions linked with the process. Given the broader relevance of the <i>Q</i>-state clock model in areas such as percolation theory, neural networks, and biological systems, where multi-state interactions are essential, our study provides a robust framework in applied quantum mechanics, statistical physics, and related fields.https://www.mdpi.com/1099-4300/27/1/11entropy<i>Q</i>-clockmagnetocaloric
spellingShingle Michel Aguilera
Sergio Pino-Alarcón
Francisco J. Peña
Eugenio E. Vogel
Natalia Cortés
Patricio Vargas
Magnetocaloric Effect for a <i>Q</i>-Clock-Type System
Entropy
entropy
<i>Q</i>-clock
magnetocaloric
title Magnetocaloric Effect for a <i>Q</i>-Clock-Type System
title_full Magnetocaloric Effect for a <i>Q</i>-Clock-Type System
title_fullStr Magnetocaloric Effect for a <i>Q</i>-Clock-Type System
title_full_unstemmed Magnetocaloric Effect for a <i>Q</i>-Clock-Type System
title_short Magnetocaloric Effect for a <i>Q</i>-Clock-Type System
title_sort magnetocaloric effect for a i q i clock type system
topic entropy
<i>Q</i>-clock
magnetocaloric
url https://www.mdpi.com/1099-4300/27/1/11
work_keys_str_mv AT michelaguilera magnetocaloriceffectforaiqiclocktypesystem
AT sergiopinoalarcon magnetocaloriceffectforaiqiclocktypesystem
AT franciscojpena magnetocaloriceffectforaiqiclocktypesystem
AT eugenioevogel magnetocaloriceffectforaiqiclocktypesystem
AT nataliacortes magnetocaloriceffectforaiqiclocktypesystem
AT patriciovargas magnetocaloriceffectforaiqiclocktypesystem