Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance

Multidrug-resistant (MDR) bacterial pathogens pose a serious threat to global health, underscoring the urgent need for innovative therapeutic strategies. In this work, we designed and characterized thiol-modified antisense oligonucleotide-capped gold nanoparticles (ASO-AuNPs) to resensitize antibiot...

Full description

Saved in:
Bibliographic Details
Main Authors: Cesar Rodolfo Garza-Cardenas, Angel Leon-Buitimea, A. A. Siller-Ceniceros, Jose Ruben Morones-Ramirez
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Microbiology Research
Subjects:
Online Access:https://www.mdpi.com/2036-7481/16/3/70
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850091060041089024
author Cesar Rodolfo Garza-Cardenas
Angel Leon-Buitimea
A. A. Siller-Ceniceros
Jose Ruben Morones-Ramirez
author_facet Cesar Rodolfo Garza-Cardenas
Angel Leon-Buitimea
A. A. Siller-Ceniceros
Jose Ruben Morones-Ramirez
author_sort Cesar Rodolfo Garza-Cardenas
collection DOAJ
description Multidrug-resistant (MDR) bacterial pathogens pose a serious threat to global health, underscoring the urgent need for innovative therapeutic strategies. In this work, we designed and characterized thiol-modified antisense oligonucleotide-capped gold nanoparticles (ASO-AuNPs) to resensitize antibiotic-resistant bacteria. Transmission electron microscopy and UV–Vis spectroscopy confirmed the morphology, size, and optical properties of AuNPs and ASO-AuNPs. Minimum inhibitory concentrations (MIC) of ampicillin were determined for non-resistant <i>Escherichia coli</i> DH5α (16 ppm) and an ampicillin-resistant <i>E. coli</i> DH5α strain (PSK, 32,768 ppm). When co-administered with ampicillin, ASO-AuNPs (0.1 and 0.2 nM) significantly reduced bacterial growth compared to the antibiotic-alone control (<i>p</i> < 0.05), demonstrating the capacity of ASO-AuNPs to restore antibiotic efficacy. These findings provide a proof of concept that antisense oligonucleotide-functionalized nanomaterials can be harnessed to overcome beta-lactam resistance, setting the stage for further optimization and translation into clinical applications.
format Article
id doaj-art-e615cdee1b1b41b485d17188b73c0fe3
institution DOAJ
issn 2036-7481
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Microbiology Research
spelling doaj-art-e615cdee1b1b41b485d17188b73c0fe32025-08-20T02:42:27ZengMDPI AGMicrobiology Research2036-74812025-03-011637010.3390/microbiolres16030070Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial ResistanceCesar Rodolfo Garza-Cardenas0Angel Leon-Buitimea1A. A. Siller-Ceniceros2Jose Ruben Morones-Ramirez3Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, MexicoFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, MexicoFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, MexicoFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, MexicoMultidrug-resistant (MDR) bacterial pathogens pose a serious threat to global health, underscoring the urgent need for innovative therapeutic strategies. In this work, we designed and characterized thiol-modified antisense oligonucleotide-capped gold nanoparticles (ASO-AuNPs) to resensitize antibiotic-resistant bacteria. Transmission electron microscopy and UV–Vis spectroscopy confirmed the morphology, size, and optical properties of AuNPs and ASO-AuNPs. Minimum inhibitory concentrations (MIC) of ampicillin were determined for non-resistant <i>Escherichia coli</i> DH5α (16 ppm) and an ampicillin-resistant <i>E. coli</i> DH5α strain (PSK, 32,768 ppm). When co-administered with ampicillin, ASO-AuNPs (0.1 and 0.2 nM) significantly reduced bacterial growth compared to the antibiotic-alone control (<i>p</i> < 0.05), demonstrating the capacity of ASO-AuNPs to restore antibiotic efficacy. These findings provide a proof of concept that antisense oligonucleotide-functionalized nanomaterials can be harnessed to overcome beta-lactam resistance, setting the stage for further optimization and translation into clinical applications.https://www.mdpi.com/2036-7481/16/3/70antisense oligonucleotidegene silencinggold nanoparticlesantimicrobial resistancecombination therapybeta-lactam antibiotics
spellingShingle Cesar Rodolfo Garza-Cardenas
Angel Leon-Buitimea
A. A. Siller-Ceniceros
Jose Ruben Morones-Ramirez
Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance
Microbiology Research
antisense oligonucleotide
gene silencing
gold nanoparticles
antimicrobial resistance
combination therapy
beta-lactam antibiotics
title Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance
title_full Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance
title_fullStr Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance
title_full_unstemmed Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance
title_short Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance
title_sort antisense oligonucleotide capped gold nanoparticles as a potential strategy for tackling antimicrobial resistance
topic antisense oligonucleotide
gene silencing
gold nanoparticles
antimicrobial resistance
combination therapy
beta-lactam antibiotics
url https://www.mdpi.com/2036-7481/16/3/70
work_keys_str_mv AT cesarrodolfogarzacardenas antisenseoligonucleotidecappedgoldnanoparticlesasapotentialstrategyfortacklingantimicrobialresistance
AT angelleonbuitimea antisenseoligonucleotidecappedgoldnanoparticlesasapotentialstrategyfortacklingantimicrobialresistance
AT aasillerceniceros antisenseoligonucleotidecappedgoldnanoparticlesasapotentialstrategyfortacklingantimicrobialresistance
AT joserubenmoronesramirez antisenseoligonucleotidecappedgoldnanoparticlesasapotentialstrategyfortacklingantimicrobialresistance