Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance
Multidrug-resistant (MDR) bacterial pathogens pose a serious threat to global health, underscoring the urgent need for innovative therapeutic strategies. In this work, we designed and characterized thiol-modified antisense oligonucleotide-capped gold nanoparticles (ASO-AuNPs) to resensitize antibiot...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Microbiology Research |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2036-7481/16/3/70 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850091060041089024 |
|---|---|
| author | Cesar Rodolfo Garza-Cardenas Angel Leon-Buitimea A. A. Siller-Ceniceros Jose Ruben Morones-Ramirez |
| author_facet | Cesar Rodolfo Garza-Cardenas Angel Leon-Buitimea A. A. Siller-Ceniceros Jose Ruben Morones-Ramirez |
| author_sort | Cesar Rodolfo Garza-Cardenas |
| collection | DOAJ |
| description | Multidrug-resistant (MDR) bacterial pathogens pose a serious threat to global health, underscoring the urgent need for innovative therapeutic strategies. In this work, we designed and characterized thiol-modified antisense oligonucleotide-capped gold nanoparticles (ASO-AuNPs) to resensitize antibiotic-resistant bacteria. Transmission electron microscopy and UV–Vis spectroscopy confirmed the morphology, size, and optical properties of AuNPs and ASO-AuNPs. Minimum inhibitory concentrations (MIC) of ampicillin were determined for non-resistant <i>Escherichia coli</i> DH5α (16 ppm) and an ampicillin-resistant <i>E. coli</i> DH5α strain (PSK, 32,768 ppm). When co-administered with ampicillin, ASO-AuNPs (0.1 and 0.2 nM) significantly reduced bacterial growth compared to the antibiotic-alone control (<i>p</i> < 0.05), demonstrating the capacity of ASO-AuNPs to restore antibiotic efficacy. These findings provide a proof of concept that antisense oligonucleotide-functionalized nanomaterials can be harnessed to overcome beta-lactam resistance, setting the stage for further optimization and translation into clinical applications. |
| format | Article |
| id | doaj-art-e615cdee1b1b41b485d17188b73c0fe3 |
| institution | DOAJ |
| issn | 2036-7481 |
| language | English |
| publishDate | 2025-03-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Microbiology Research |
| spelling | doaj-art-e615cdee1b1b41b485d17188b73c0fe32025-08-20T02:42:27ZengMDPI AGMicrobiology Research2036-74812025-03-011637010.3390/microbiolres16030070Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial ResistanceCesar Rodolfo Garza-Cardenas0Angel Leon-Buitimea1A. A. Siller-Ceniceros2Jose Ruben Morones-Ramirez3Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, MexicoFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, MexicoFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, MexicoFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, MexicoMultidrug-resistant (MDR) bacterial pathogens pose a serious threat to global health, underscoring the urgent need for innovative therapeutic strategies. In this work, we designed and characterized thiol-modified antisense oligonucleotide-capped gold nanoparticles (ASO-AuNPs) to resensitize antibiotic-resistant bacteria. Transmission electron microscopy and UV–Vis spectroscopy confirmed the morphology, size, and optical properties of AuNPs and ASO-AuNPs. Minimum inhibitory concentrations (MIC) of ampicillin were determined for non-resistant <i>Escherichia coli</i> DH5α (16 ppm) and an ampicillin-resistant <i>E. coli</i> DH5α strain (PSK, 32,768 ppm). When co-administered with ampicillin, ASO-AuNPs (0.1 and 0.2 nM) significantly reduced bacterial growth compared to the antibiotic-alone control (<i>p</i> < 0.05), demonstrating the capacity of ASO-AuNPs to restore antibiotic efficacy. These findings provide a proof of concept that antisense oligonucleotide-functionalized nanomaterials can be harnessed to overcome beta-lactam resistance, setting the stage for further optimization and translation into clinical applications.https://www.mdpi.com/2036-7481/16/3/70antisense oligonucleotidegene silencinggold nanoparticlesantimicrobial resistancecombination therapybeta-lactam antibiotics |
| spellingShingle | Cesar Rodolfo Garza-Cardenas Angel Leon-Buitimea A. A. Siller-Ceniceros Jose Ruben Morones-Ramirez Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance Microbiology Research antisense oligonucleotide gene silencing gold nanoparticles antimicrobial resistance combination therapy beta-lactam antibiotics |
| title | Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance |
| title_full | Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance |
| title_fullStr | Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance |
| title_full_unstemmed | Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance |
| title_short | Antisense Oligonucleotide-Capped Gold Nanoparticles as a Potential Strategy for Tackling Antimicrobial Resistance |
| title_sort | antisense oligonucleotide capped gold nanoparticles as a potential strategy for tackling antimicrobial resistance |
| topic | antisense oligonucleotide gene silencing gold nanoparticles antimicrobial resistance combination therapy beta-lactam antibiotics |
| url | https://www.mdpi.com/2036-7481/16/3/70 |
| work_keys_str_mv | AT cesarrodolfogarzacardenas antisenseoligonucleotidecappedgoldnanoparticlesasapotentialstrategyfortacklingantimicrobialresistance AT angelleonbuitimea antisenseoligonucleotidecappedgoldnanoparticlesasapotentialstrategyfortacklingantimicrobialresistance AT aasillerceniceros antisenseoligonucleotidecappedgoldnanoparticlesasapotentialstrategyfortacklingantimicrobialresistance AT joserubenmoronesramirez antisenseoligonucleotidecappedgoldnanoparticlesasapotentialstrategyfortacklingantimicrobialresistance |