High relative accuracy for a Newton form of bivariate interpolation problems

The problem of bivariate polynomial interpolation using Newton-type bases is examined, leading to the application of a generalized Kronecker matrix product. Algorithms for computing the coefficients of the interpolating polynomial are presented, along with conditions that ensure relative errors of t...

Full description

Saved in:
Bibliographic Details
Main Authors: Yasmina Khiar, Esmeralda Mainar, Eduardo Royo-Amondarain, Beatriz Rubio
Format: Article
Language:English
Published: AIMS Press 2025-02-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2025178
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849703666291834880
author Yasmina Khiar
Esmeralda Mainar
Eduardo Royo-Amondarain
Beatriz Rubio
author_facet Yasmina Khiar
Esmeralda Mainar
Eduardo Royo-Amondarain
Beatriz Rubio
author_sort Yasmina Khiar
collection DOAJ
description The problem of bivariate polynomial interpolation using Newton-type bases is examined, leading to the application of a generalized Kronecker matrix product. Algorithms for computing the coefficients of the interpolating polynomial are presented, along with conditions that ensure relative errors of the order of machine precision. A generalization of the classical recursion formula of divided differences in two dimensions is proposed for grids that generalize the standard rectangular layout. Numerical experiments demonstrate the high accuracy achieved by the proposed approach.
format Article
id doaj-art-e5e530089b544efdbeef0704ebcadf48
institution DOAJ
issn 2473-6988
language English
publishDate 2025-02-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-e5e530089b544efdbeef0704ebcadf482025-08-20T03:17:09ZengAIMS PressAIMS Mathematics2473-69882025-02-011023836384710.3934/math.2025178High relative accuracy for a Newton form of bivariate interpolation problemsYasmina Khiar0Esmeralda Mainar1Eduardo Royo-Amondarain2Beatriz Rubio3Departamento de Matemática Aplicada / IUMA, Universidad de Zaragoza, SpainDepartamento de Matemática Aplicada / IUMA, Universidad de Zaragoza, SpainDepartamento de Matemática Aplicada / CAPA, Universidad de Zaragoza, SpainDepartamento de Matemática Aplicada / IUMA, Universidad de Zaragoza, SpainThe problem of bivariate polynomial interpolation using Newton-type bases is examined, leading to the application of a generalized Kronecker matrix product. Algorithms for computing the coefficients of the interpolating polynomial are presented, along with conditions that ensure relative errors of the order of machine precision. A generalization of the classical recursion formula of divided differences in two dimensions is proposed for grids that generalize the standard rectangular layout. Numerical experiments demonstrate the high accuracy achieved by the proposed approach.https://www.aimspress.com/article/doi/10.3934/math.2025178high relative accuracybidiagonal decompositionstotally positive matricesbivariate interpolation
spellingShingle Yasmina Khiar
Esmeralda Mainar
Eduardo Royo-Amondarain
Beatriz Rubio
High relative accuracy for a Newton form of bivariate interpolation problems
AIMS Mathematics
high relative accuracy
bidiagonal decompositions
totally positive matrices
bivariate interpolation
title High relative accuracy for a Newton form of bivariate interpolation problems
title_full High relative accuracy for a Newton form of bivariate interpolation problems
title_fullStr High relative accuracy for a Newton form of bivariate interpolation problems
title_full_unstemmed High relative accuracy for a Newton form of bivariate interpolation problems
title_short High relative accuracy for a Newton form of bivariate interpolation problems
title_sort high relative accuracy for a newton form of bivariate interpolation problems
topic high relative accuracy
bidiagonal decompositions
totally positive matrices
bivariate interpolation
url https://www.aimspress.com/article/doi/10.3934/math.2025178
work_keys_str_mv AT yasminakhiar highrelativeaccuracyforanewtonformofbivariateinterpolationproblems
AT esmeraldamainar highrelativeaccuracyforanewtonformofbivariateinterpolationproblems
AT eduardoroyoamondarain highrelativeaccuracyforanewtonformofbivariateinterpolationproblems
AT beatrizrubio highrelativeaccuracyforanewtonformofbivariateinterpolationproblems