Fault diagnosis of nonlinear analog circuits using generalized frequency response function and LSSVM.

A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation...

Full description

Saved in:
Bibliographic Details
Main Authors: Jialiang Zhang, Yaowang Yang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0316151
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation accuracy, the GFRFs of an analog circuit are solved directly using time-domain data. The Fourier transform of the time-domain data is avoided. After obtaining the fault features, a multi-fault classifier is designed based on the LSSVM. In order to improve the training speed and reduces storage, a simplified LSSVM model is used to construct the classifier, and the conjugate gradient algorithm is used for training. The fault diagnosis simulation experiment is conducted on a biquad filter circuit to verify the proposed method. The experimental results show that the proposed method has high diagnostic accuracy and short training time.
ISSN:1932-6203