A Novel Approach for Blast-Induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network

Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Aminaton Marto, Mohsen Hajihassani, Danial Jahed Armaghani, Edy Tonnizam Mohamad, Ahmad Mahir Makhtar
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/643715
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flyrock is one of the major disturbances induced by blasting which may cause severe damage to nearby structures. This phenomenon has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis, maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and empirical predictors. The results clearly showed the superiority of the proposed ICA-ANN model in comparison with the proposed BP-ANN model and empirical approaches.
ISSN:2356-6140
1537-744X