Dielectrophoresis-Enhanced Microfluidic Device with Membrane Filter for Efficient Microparticle Concentration and Optical Detection
This paper presents a novel microfluidic device that integrates dielectrophoresis (DEP) forces with a membrane filter to concentrate and trap microparticles in a narrow region for enhanced optical analysis. The device combines the broad particle capture capability of a membrane filter with the preci...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/16/2/158 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a novel microfluidic device that integrates dielectrophoresis (DEP) forces with a membrane filter to concentrate and trap microparticles in a narrow region for enhanced optical analysis. The device combines the broad particle capture capability of a membrane filter with the precision of DEP to focus particles in regions optimized for optical measurements. The device features transparent indium tin oxide (ITO) top electrodes on a glass substrate and gold (Au) bottom electrodes patterned on a small area of the membrane filter, with spacers to control the gaps between the electrodes. This configuration enables precise particle concentration at a specific location and facilitates real-time optical detection. Experiments using 0.8 μm fluorescent polystyrene (PS) beads and <i>Escherichia coli</i> (<i>E. coli</i>) bacteria demonstrated effective particle trapping and concentration, with fluorescence intensity increasing proportionally to particle concentration. The application of DEP forces in a small region of the membrane filter resulted in a significant enhancement of fluorescence intensity, showcasing the effectiveness of the DEP-enhanced design for improving particle concentration and optical measurement sensitivity. The device also showed promising potential for bacterial detection, particularly with <i>E. coli</i>, by achieving a linear increase in fluorescence intensity with increasing bacterial concentration. These results highlight the device’s potential for precise and efficient microparticle concentration and detection. |
|---|---|
| ISSN: | 2072-666X |