Positive Solution Pairs for Coupled <i>p</i>-Laplacian Hadamard Fractional Differential Model with Singular Source Item on Time Variable

The mathematical theories and methods of fractional calculus are relatively mature, which have been widely used in signal processing, control systems, nonlinear dynamics, financial models, etc. The studies of some basic theories of fractional differential equations can provide more understanding of...

Full description

Saved in:
Bibliographic Details
Main Authors: Cheng Li, Limin Guo
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/12/682
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850036489212133376
author Cheng Li
Limin Guo
author_facet Cheng Li
Limin Guo
author_sort Cheng Li
collection DOAJ
description The mathematical theories and methods of fractional calculus are relatively mature, which have been widely used in signal processing, control systems, nonlinear dynamics, financial models, etc. The studies of some basic theories of fractional differential equations can provide more understanding of mechanisms for the applications. In this paper, the expression of the Green function as well as its special properties are acquired and presented through theoretical analyses. Subsequently, on the basis of these properties of the Green function, the existence and uniqueness of positive solutions are achieved for a singular <i>p</i>-Laplacian fractional-order differential equation with nonlocal integral and infinite-point boundary value systems by using the method of a nonlinear alternative of Leray–Schauder-type Guo–Krasnoselskii’s fixed point theorem in cone, and the Banach fixed point theorem, respectively. Some existence results are obtained for the case in which the nonlinearity is allowed to be singular with regard to the time variable. Several examples are correspondingly provided to show the correctness and applicability of the obtained results, where nonlinear terms are controlled by the integrable functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mi>π</mi><msup><mrow><mo>(</mo><mo form="prefix">ln</mo><mi>t</mi><mo>)</mo></mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo form="prefix">ln</mo><mi>t</mi><mo>)</mo></mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mrow></mfrac></mstyle></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mi>π</mi><msup><mrow><mo>(</mo><mo form="prefix">ln</mo><mi>t</mi><mo>)</mo></mrow><mfrac><mn>3</mn><mn>4</mn></mfrac></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo form="prefix">ln</mo><mi>t</mi><mo>)</mo></mrow><mfrac><mn>3</mn><mn>4</mn></mfrac></msup></mrow></mfrac></mstyle></semantics></math></inline-formula> in Example 1, and by the integrable functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>,</mo><mover><mi>θ</mi><mo>¯</mo></mover></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>φ</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>ψ</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula> in Example 2, respectively. The present work may contribute to the improvement and application of the coupled p-Laplacian Hadamard fractional differential model and further promote the development of fractional differential equations and fractional differential calculus.
format Article
id doaj-art-e4efb0fceacc452baffc105e52a8a43a
institution DOAJ
issn 2504-3110
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-e4efb0fceacc452baffc105e52a8a43a2025-08-20T02:57:07ZengMDPI AGFractal and Fractional2504-31102024-11-0181268210.3390/fractalfract8120682Positive Solution Pairs for Coupled <i>p</i>-Laplacian Hadamard Fractional Differential Model with Singular Source Item on Time VariableCheng Li0Limin Guo1School of Automotive Engineering, Changzhou Institute of Technology, Changzhou 213002, ChinaSchool of Science, Changzhou Institute of Technology, Changzhou 213002, ChinaThe mathematical theories and methods of fractional calculus are relatively mature, which have been widely used in signal processing, control systems, nonlinear dynamics, financial models, etc. The studies of some basic theories of fractional differential equations can provide more understanding of mechanisms for the applications. In this paper, the expression of the Green function as well as its special properties are acquired and presented through theoretical analyses. Subsequently, on the basis of these properties of the Green function, the existence and uniqueness of positive solutions are achieved for a singular <i>p</i>-Laplacian fractional-order differential equation with nonlocal integral and infinite-point boundary value systems by using the method of a nonlinear alternative of Leray–Schauder-type Guo–Krasnoselskii’s fixed point theorem in cone, and the Banach fixed point theorem, respectively. Some existence results are obtained for the case in which the nonlinearity is allowed to be singular with regard to the time variable. Several examples are correspondingly provided to show the correctness and applicability of the obtained results, where nonlinear terms are controlled by the integrable functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mi>π</mi><msup><mrow><mo>(</mo><mo form="prefix">ln</mo><mi>t</mi><mo>)</mo></mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo form="prefix">ln</mo><mi>t</mi><mo>)</mo></mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mrow></mfrac></mstyle></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mrow><mi>π</mi><msup><mrow><mo>(</mo><mo form="prefix">ln</mo><mi>t</mi><mo>)</mo></mrow><mfrac><mn>3</mn><mn>4</mn></mfrac></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mo form="prefix">ln</mo><mi>t</mi><mo>)</mo></mrow><mfrac><mn>3</mn><mn>4</mn></mfrac></msup></mrow></mfrac></mstyle></semantics></math></inline-formula> in Example 1, and by the integrable functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>,</mo><mover><mi>θ</mi><mo>¯</mo></mover></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>φ</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>ψ</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula> in Example 2, respectively. The present work may contribute to the improvement and application of the coupled p-Laplacian Hadamard fractional differential model and further promote the development of fractional differential equations and fractional differential calculus.https://www.mdpi.com/2504-3110/8/12/682Hadamard fractionalsingular nonlinear termcoupled differential systempositive solutionintegral and infinite-point boundary condition
spellingShingle Cheng Li
Limin Guo
Positive Solution Pairs for Coupled <i>p</i>-Laplacian Hadamard Fractional Differential Model with Singular Source Item on Time Variable
Fractal and Fractional
Hadamard fractional
singular nonlinear term
coupled differential system
positive solution
integral and infinite-point boundary condition
title Positive Solution Pairs for Coupled <i>p</i>-Laplacian Hadamard Fractional Differential Model with Singular Source Item on Time Variable
title_full Positive Solution Pairs for Coupled <i>p</i>-Laplacian Hadamard Fractional Differential Model with Singular Source Item on Time Variable
title_fullStr Positive Solution Pairs for Coupled <i>p</i>-Laplacian Hadamard Fractional Differential Model with Singular Source Item on Time Variable
title_full_unstemmed Positive Solution Pairs for Coupled <i>p</i>-Laplacian Hadamard Fractional Differential Model with Singular Source Item on Time Variable
title_short Positive Solution Pairs for Coupled <i>p</i>-Laplacian Hadamard Fractional Differential Model with Singular Source Item on Time Variable
title_sort positive solution pairs for coupled i p i laplacian hadamard fractional differential model with singular source item on time variable
topic Hadamard fractional
singular nonlinear term
coupled differential system
positive solution
integral and infinite-point boundary condition
url https://www.mdpi.com/2504-3110/8/12/682
work_keys_str_mv AT chengli positivesolutionpairsforcoupledipilaplacianhadamardfractionaldifferentialmodelwithsingularsourceitemontimevariable
AT liminguo positivesolutionpairsforcoupledipilaplacianhadamardfractionaldifferentialmodelwithsingularsourceitemontimevariable