Pseudo-linear summation explains neural geometry of multi-finger movements in human premotor cortex
Abstract How does the motor cortex combine simple movements (such as single finger flexion/extension) into complex movements (such as hand gestures, or playing the piano)? To address this question, motor cortical activity was recorded using intracortical multi-electrode arrays in two male people wit...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-59039-z |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract How does the motor cortex combine simple movements (such as single finger flexion/extension) into complex movements (such as hand gestures, or playing the piano)? To address this question, motor cortical activity was recorded using intracortical multi-electrode arrays in two male people with tetraplegia as they attempted single, pairwise and higher-order finger movements. Neural activity for simultaneous movements was largely aligned with linear summation of corresponding single finger movement activities, with two violations. First, the neural activity exhibited normalization, preventing a large magnitude with an increasing number of moving fingers. Second, the neural tuning direction of weakly represented fingers changed significantly as a result of the movement of more strongly represented fingers. These deviations from linearity resulted in non-linear methods outperforming linear methods for neural decoding. Simultaneous finger movements are thus represented by the combination of individual finger movements by pseudo-linear summation. |
|---|---|
| ISSN: | 2041-1723 |