Eigenfunctions on an infinite Schrödinger network

In this article, we show that there is a one-to-one correspondence between the eigenfunctions associated with the perturbed Laplacian operator Δq{\Delta }_{q} on a Schrödinger infinite network {X,t,q}\{X,t,q\} with weight function q(a)q\left(a) and the eigenfunctions associated with classical Laplac...

Full description

Saved in:
Bibliographic Details
Main Authors: Bajunaid Ibtesam, Venkataraman Madhu, Manivannan Varadha Raj
Format: Article
Language:English
Published: De Gruyter 2025-06-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2025-0158
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849726497856684032
author Bajunaid Ibtesam
Venkataraman Madhu
Manivannan Varadha Raj
author_facet Bajunaid Ibtesam
Venkataraman Madhu
Manivannan Varadha Raj
author_sort Bajunaid Ibtesam
collection DOAJ
description In this article, we show that there is a one-to-one correspondence between the eigenfunctions associated with the perturbed Laplacian operator Δq{\Delta }_{q} on a Schrödinger infinite network {X,t,q}\{X,t,q\} with weight function q(a)q\left(a) and the eigenfunctions associated with classical Laplacian operator Δ\Delta on the infinite network {X,t}.\{X,t\}.
format Article
id doaj-art-e4a6ebc3dd9d4d96b64709a4b60af4de
institution DOAJ
issn 2391-5455
language English
publishDate 2025-06-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj-art-e4a6ebc3dd9d4d96b64709a4b60af4de2025-08-20T03:10:09ZengDe GruyterOpen Mathematics2391-54552025-06-01231158191410.1515/math-2025-0158Eigenfunctions on an infinite Schrödinger networkBajunaid Ibtesam0Venkataraman Madhu1Manivannan Varadha Raj2Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, IndiaDepartment of Mathematics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram - 631561, Tamil Nadu, IndiaIn this article, we show that there is a one-to-one correspondence between the eigenfunctions associated with the perturbed Laplacian operator Δq{\Delta }_{q} on a Schrödinger infinite network {X,t,q}\{X,t,q\} with weight function q(a)q\left(a) and the eigenfunctions associated with classical Laplacian operator Δ\Delta on the infinite network {X,t}.\{X,t\}.https://doi.org/10.1515/math-2025-0158schrödinger infinite networklaplace operator on an infinite networkeigenfunctions15a1831c2035p0535r02
spellingShingle Bajunaid Ibtesam
Venkataraman Madhu
Manivannan Varadha Raj
Eigenfunctions on an infinite Schrödinger network
Open Mathematics
schrödinger infinite network
laplace operator on an infinite network
eigenfunctions
15a18
31c20
35p05
35r02
title Eigenfunctions on an infinite Schrödinger network
title_full Eigenfunctions on an infinite Schrödinger network
title_fullStr Eigenfunctions on an infinite Schrödinger network
title_full_unstemmed Eigenfunctions on an infinite Schrödinger network
title_short Eigenfunctions on an infinite Schrödinger network
title_sort eigenfunctions on an infinite schrodinger network
topic schrödinger infinite network
laplace operator on an infinite network
eigenfunctions
15a18
31c20
35p05
35r02
url https://doi.org/10.1515/math-2025-0158
work_keys_str_mv AT bajunaidibtesam eigenfunctionsonaninfiniteschrodingernetwork
AT venkataramanmadhu eigenfunctionsonaninfiniteschrodingernetwork
AT manivannanvaradharaj eigenfunctionsonaninfiniteschrodingernetwork