Eigenfunctions on an infinite Schrödinger network
In this article, we show that there is a one-to-one correspondence between the eigenfunctions associated with the perturbed Laplacian operator Δq{\Delta }_{q} on a Schrödinger infinite network {X,t,q}\{X,t,q\} with weight function q(a)q\left(a) and the eigenfunctions associated with classical Laplac...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2025-06-01
|
| Series: | Open Mathematics |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/math-2025-0158 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849726497856684032 |
|---|---|
| author | Bajunaid Ibtesam Venkataraman Madhu Manivannan Varadha Raj |
| author_facet | Bajunaid Ibtesam Venkataraman Madhu Manivannan Varadha Raj |
| author_sort | Bajunaid Ibtesam |
| collection | DOAJ |
| description | In this article, we show that there is a one-to-one correspondence between the eigenfunctions associated with the perturbed Laplacian operator Δq{\Delta }_{q} on a Schrödinger infinite network {X,t,q}\{X,t,q\} with weight function q(a)q\left(a) and the eigenfunctions associated with classical Laplacian operator Δ\Delta on the infinite network {X,t}.\{X,t\}. |
| format | Article |
| id | doaj-art-e4a6ebc3dd9d4d96b64709a4b60af4de |
| institution | DOAJ |
| issn | 2391-5455 |
| language | English |
| publishDate | 2025-06-01 |
| publisher | De Gruyter |
| record_format | Article |
| series | Open Mathematics |
| spelling | doaj-art-e4a6ebc3dd9d4d96b64709a4b60af4de2025-08-20T03:10:09ZengDe GruyterOpen Mathematics2391-54552025-06-01231158191410.1515/math-2025-0158Eigenfunctions on an infinite Schrödinger networkBajunaid Ibtesam0Venkataraman Madhu1Manivannan Varadha Raj2Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, IndiaDepartment of Mathematics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kanchipuram - 631561, Tamil Nadu, IndiaIn this article, we show that there is a one-to-one correspondence between the eigenfunctions associated with the perturbed Laplacian operator Δq{\Delta }_{q} on a Schrödinger infinite network {X,t,q}\{X,t,q\} with weight function q(a)q\left(a) and the eigenfunctions associated with classical Laplacian operator Δ\Delta on the infinite network {X,t}.\{X,t\}.https://doi.org/10.1515/math-2025-0158schrödinger infinite networklaplace operator on an infinite networkeigenfunctions15a1831c2035p0535r02 |
| spellingShingle | Bajunaid Ibtesam Venkataraman Madhu Manivannan Varadha Raj Eigenfunctions on an infinite Schrödinger network Open Mathematics schrödinger infinite network laplace operator on an infinite network eigenfunctions 15a18 31c20 35p05 35r02 |
| title | Eigenfunctions on an infinite Schrödinger network |
| title_full | Eigenfunctions on an infinite Schrödinger network |
| title_fullStr | Eigenfunctions on an infinite Schrödinger network |
| title_full_unstemmed | Eigenfunctions on an infinite Schrödinger network |
| title_short | Eigenfunctions on an infinite Schrödinger network |
| title_sort | eigenfunctions on an infinite schrodinger network |
| topic | schrödinger infinite network laplace operator on an infinite network eigenfunctions 15a18 31c20 35p05 35r02 |
| url | https://doi.org/10.1515/math-2025-0158 |
| work_keys_str_mv | AT bajunaidibtesam eigenfunctionsonaninfiniteschrodingernetwork AT venkataramanmadhu eigenfunctionsonaninfiniteschrodingernetwork AT manivannanvaradharaj eigenfunctionsonaninfiniteschrodingernetwork |