A family of commuting contraction semigroups on l1(N){l}^{1}\left({\mathbb{N}}) and l∞(N){l}^{\infty }\left({\mathbb{N}})

A family of commuting contraction semigroups (Pn(t))n∈N{\left({P}_{n}\left(t))}_{n\in {\mathbb{N}}}, defined on l1(N){l}^{1}\left({\mathbb{N}}), is presented. For this family, the product semigroup ∏n=1∞Pn(t){\prod }_{n=1}^{\infty }{P}_{n}\left(t) exists and has bounded generator. The infinite produ...

Full description

Saved in:
Bibliographic Details
Main Author: Nieznaj Ernest
Format: Article
Language:English
Published: De Gruyter 2025-07-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2025-0168
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849320689884987392
author Nieznaj Ernest
author_facet Nieznaj Ernest
author_sort Nieznaj Ernest
collection DOAJ
description A family of commuting contraction semigroups (Pn(t))n∈N{\left({P}_{n}\left(t))}_{n\in {\mathbb{N}}}, defined on l1(N){l}^{1}\left({\mathbb{N}}), is presented. For this family, the product semigroup ∏n=1∞Pn(t){\prod }_{n=1}^{\infty }{P}_{n}\left(t) exists and has bounded generator. The infinite product of the corresponding family of adjoint semigroups (Pn∗(t))n∈N{\left({P}_{n}^{\ast }\left(t))}_{n\in {\mathbb{N}}}, defined on l∞(N){l}^{\infty }\left({\mathbb{N}}), also exists and its generator is bounded. Explicit formulae for these generators are also given.
format Article
id doaj-art-e46f93a7461a4eb6b2a489c4fb0af1bb
institution Kabale University
issn 2391-5455
language English
publishDate 2025-07-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj-art-e46f93a7461a4eb6b2a489c4fb0af1bb2025-08-20T03:50:00ZengDe GruyterOpen Mathematics2391-54552025-07-0123152454210.1515/math-2025-0168A family of commuting contraction semigroups on l1(N){l}^{1}\left({\mathbb{N}}) and l∞(N){l}^{\infty }\left({\mathbb{N}})Nieznaj Ernest0Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, PolandA family of commuting contraction semigroups (Pn(t))n∈N{\left({P}_{n}\left(t))}_{n\in {\mathbb{N}}}, defined on l1(N){l}^{1}\left({\mathbb{N}}), is presented. For this family, the product semigroup ∏n=1∞Pn(t){\prod }_{n=1}^{\infty }{P}_{n}\left(t) exists and has bounded generator. The infinite product of the corresponding family of adjoint semigroups (Pn∗(t))n∈N{\left({P}_{n}^{\ast }\left(t))}_{n\in {\mathbb{N}}}, defined on l∞(N){l}^{\infty }\left({\mathbb{N}}), also exists and its generator is bounded. Explicit formulae for these generators are also given.https://doi.org/10.1515/math-2025-0168infinite product of semigroups of operatorscontraction semigroupbounded generator47d0360j2760j35
spellingShingle Nieznaj Ernest
A family of commuting contraction semigroups on l1(N){l}^{1}\left({\mathbb{N}}) and l∞(N){l}^{\infty }\left({\mathbb{N}})
Open Mathematics
infinite product of semigroups of operators
contraction semigroup
bounded generator
47d03
60j27
60j35
title A family of commuting contraction semigroups on l1(N){l}^{1}\left({\mathbb{N}}) and l∞(N){l}^{\infty }\left({\mathbb{N}})
title_full A family of commuting contraction semigroups on l1(N){l}^{1}\left({\mathbb{N}}) and l∞(N){l}^{\infty }\left({\mathbb{N}})
title_fullStr A family of commuting contraction semigroups on l1(N){l}^{1}\left({\mathbb{N}}) and l∞(N){l}^{\infty }\left({\mathbb{N}})
title_full_unstemmed A family of commuting contraction semigroups on l1(N){l}^{1}\left({\mathbb{N}}) and l∞(N){l}^{\infty }\left({\mathbb{N}})
title_short A family of commuting contraction semigroups on l1(N){l}^{1}\left({\mathbb{N}}) and l∞(N){l}^{\infty }\left({\mathbb{N}})
title_sort family of commuting contraction semigroups on l1 n l 1 left mathbb n and l∞ n l infty left mathbb n
topic infinite product of semigroups of operators
contraction semigroup
bounded generator
47d03
60j27
60j35
url https://doi.org/10.1515/math-2025-0168
work_keys_str_mv AT nieznajernest afamilyofcommutingcontractionsemigroupsonl1nl1leftmathbbnandlnlinftyleftmathbbn
AT nieznajernest familyofcommutingcontractionsemigroupsonl1nl1leftmathbbnandlnlinftyleftmathbbn