Multi-Task Learning for Real-Time BSIM-CMG Parameter Extraction of NSFETs With Multiple Structural Variations

We present a novel multi-task learning (MTL) approach with shared representation for the real-time extraction of Berkeley Short-channel IGFET Model-Common Gate (BSIM-CMG) parameters in nanosheet field-effect transistors (NSFETs) with multiple structural variations. An innovative artificial neural ne...

Full description

Saved in:
Bibliographic Details
Main Authors: Seunghwan Lee, Seungjoon Eom, Jinsu Jeong, Junjong Lee, Sanguk Lee, Hyeok Yun, Yonghwan Ahn, Rock-Hyun Baek
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10781410/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850060053355167744
author Seunghwan Lee
Seungjoon Eom
Jinsu Jeong
Junjong Lee
Sanguk Lee
Hyeok Yun
Yonghwan Ahn
Rock-Hyun Baek
author_facet Seunghwan Lee
Seungjoon Eom
Jinsu Jeong
Junjong Lee
Sanguk Lee
Hyeok Yun
Yonghwan Ahn
Rock-Hyun Baek
author_sort Seunghwan Lee
collection DOAJ
description We present a novel multi-task learning (MTL) approach with shared representation for the real-time extraction of Berkeley Short-channel IGFET Model-Common Gate (BSIM-CMG) parameters in nanosheet field-effect transistors (NSFETs) with multiple structural variations. An innovative artificial neural network (ANN) architecture, coupled with specialized training strategies, was introduced to extract BSIM-CMG parameters in NSFETs with varying gate lengths (<inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {g}}$ </tex-math></inline-formula>), nanosheet widths (<inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {ns}}$ </tex-math></inline-formula>), and thicknesses (<inline-formula> <tex-math notation="LaTeX">$T_{\mathrm {ns}}$ </tex-math></inline-formula>). To mitigate overfitting due to disparate data sources, such as Monte Carlo simulations for training data and technology computer-aided design (TCAD) simulations or hardware measurements for test data, additive noise was incorporated into the training data. Optimal test accuracy was achieved with maximum noise levels of 10% for <inline-formula> <tex-math notation="LaTeX">$I_{\mathrm {d}}$ </tex-math></inline-formula> and 2% for <inline-formula> <tex-math notation="LaTeX">$C_{\mathrm {gg}}$ </tex-math></inline-formula>. The MTL approach, leveraging shared representation, effectively captured relationships among input-output groups, reducing the risk of biased ANN training toward any specific group. The proposed method was evaluated using a 1.4 nm node NSFET and eight additional NSFETs with <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {g}}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$T_{\mathrm {ns}}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {ns}}$ </tex-math></inline-formula> variations of 1, 0.5, and 5 nm, respectively, from the baseline values of 12, 5, and 25 nm at the 1.4 nm node. The MTL-based ANN successfully extracted BSIM-CMG parameters for both <inline-formula> <tex-math notation="LaTeX">$I_{\mathrm {d}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$C_{\mathrm {gg}}$ </tex-math></inline-formula>, yielding low relative modeling errors of 4.26% for <inline-formula> <tex-math notation="LaTeX">$I_{\mathrm {d}}$ </tex-math></inline-formula> and 0.709% for <inline-formula> <tex-math notation="LaTeX">$C_{\mathrm {gg}}$ </tex-math></inline-formula>. Additionally, the method was validated using 3 nm node hardware NSFETs and nanowire FETs with varying <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {g}}$ </tex-math></inline-formula> and nanowire diameters, demonstrating its versatility across different technology nodes and device architectures.
format Article
id doaj-art-e45b9ce020794694a8efa134ebbd1964
institution DOAJ
issn 2169-3536
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-e45b9ce020794694a8efa134ebbd19642025-08-20T02:50:41ZengIEEEIEEE Access2169-35362024-01-011218461918462810.1109/ACCESS.2024.351261210781410Multi-Task Learning for Real-Time BSIM-CMG Parameter Extraction of NSFETs With Multiple Structural VariationsSeunghwan Lee0https://orcid.org/0000-0003-3137-9335Seungjoon Eom1https://orcid.org/0000-0002-5743-1798Jinsu Jeong2https://orcid.org/0000-0002-0000-6416Junjong Lee3https://orcid.org/0000-0002-0513-8784Sanguk Lee4https://orcid.org/0000-0002-8932-6626Hyeok Yun5https://orcid.org/0000-0003-4597-4389Yonghwan Ahn6https://orcid.org/0009-0004-7381-8441Rock-Hyun Baek7https://orcid.org/0000-0002-6175-8101Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South KoreaDepartment of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South KoreaWe present a novel multi-task learning (MTL) approach with shared representation for the real-time extraction of Berkeley Short-channel IGFET Model-Common Gate (BSIM-CMG) parameters in nanosheet field-effect transistors (NSFETs) with multiple structural variations. An innovative artificial neural network (ANN) architecture, coupled with specialized training strategies, was introduced to extract BSIM-CMG parameters in NSFETs with varying gate lengths (<inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {g}}$ </tex-math></inline-formula>), nanosheet widths (<inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {ns}}$ </tex-math></inline-formula>), and thicknesses (<inline-formula> <tex-math notation="LaTeX">$T_{\mathrm {ns}}$ </tex-math></inline-formula>). To mitigate overfitting due to disparate data sources, such as Monte Carlo simulations for training data and technology computer-aided design (TCAD) simulations or hardware measurements for test data, additive noise was incorporated into the training data. Optimal test accuracy was achieved with maximum noise levels of 10% for <inline-formula> <tex-math notation="LaTeX">$I_{\mathrm {d}}$ </tex-math></inline-formula> and 2% for <inline-formula> <tex-math notation="LaTeX">$C_{\mathrm {gg}}$ </tex-math></inline-formula>. The MTL approach, leveraging shared representation, effectively captured relationships among input-output groups, reducing the risk of biased ANN training toward any specific group. The proposed method was evaluated using a 1.4 nm node NSFET and eight additional NSFETs with <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {g}}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$T_{\mathrm {ns}}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$W_{\mathrm {ns}}$ </tex-math></inline-formula> variations of 1, 0.5, and 5 nm, respectively, from the baseline values of 12, 5, and 25 nm at the 1.4 nm node. The MTL-based ANN successfully extracted BSIM-CMG parameters for both <inline-formula> <tex-math notation="LaTeX">$I_{\mathrm {d}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$C_{\mathrm {gg}}$ </tex-math></inline-formula>, yielding low relative modeling errors of 4.26% for <inline-formula> <tex-math notation="LaTeX">$I_{\mathrm {d}}$ </tex-math></inline-formula> and 0.709% for <inline-formula> <tex-math notation="LaTeX">$C_{\mathrm {gg}}$ </tex-math></inline-formula>. Additionally, the method was validated using 3 nm node hardware NSFETs and nanowire FETs with varying <inline-formula> <tex-math notation="LaTeX">$L_{\mathrm {g}}$ </tex-math></inline-formula> and nanowire diameters, demonstrating its versatility across different technology nodes and device architectures.https://ieeexplore.ieee.org/document/10781410/Additive noiseartificial neural network (ANN)Berkeley short-channel IGFET model common multi-gate (BSIM-CMG)compact modelmulti-task learning (MTL)nanosheet field-effect transistor (NSFET)
spellingShingle Seunghwan Lee
Seungjoon Eom
Jinsu Jeong
Junjong Lee
Sanguk Lee
Hyeok Yun
Yonghwan Ahn
Rock-Hyun Baek
Multi-Task Learning for Real-Time BSIM-CMG Parameter Extraction of NSFETs With Multiple Structural Variations
IEEE Access
Additive noise
artificial neural network (ANN)
Berkeley short-channel IGFET model common multi-gate (BSIM-CMG)
compact model
multi-task learning (MTL)
nanosheet field-effect transistor (NSFET)
title Multi-Task Learning for Real-Time BSIM-CMG Parameter Extraction of NSFETs With Multiple Structural Variations
title_full Multi-Task Learning for Real-Time BSIM-CMG Parameter Extraction of NSFETs With Multiple Structural Variations
title_fullStr Multi-Task Learning for Real-Time BSIM-CMG Parameter Extraction of NSFETs With Multiple Structural Variations
title_full_unstemmed Multi-Task Learning for Real-Time BSIM-CMG Parameter Extraction of NSFETs With Multiple Structural Variations
title_short Multi-Task Learning for Real-Time BSIM-CMG Parameter Extraction of NSFETs With Multiple Structural Variations
title_sort multi task learning for real time bsim cmg parameter extraction of nsfets with multiple structural variations
topic Additive noise
artificial neural network (ANN)
Berkeley short-channel IGFET model common multi-gate (BSIM-CMG)
compact model
multi-task learning (MTL)
nanosheet field-effect transistor (NSFET)
url https://ieeexplore.ieee.org/document/10781410/
work_keys_str_mv AT seunghwanlee multitasklearningforrealtimebsimcmgparameterextractionofnsfetswithmultiplestructuralvariations
AT seungjooneom multitasklearningforrealtimebsimcmgparameterextractionofnsfetswithmultiplestructuralvariations
AT jinsujeong multitasklearningforrealtimebsimcmgparameterextractionofnsfetswithmultiplestructuralvariations
AT junjonglee multitasklearningforrealtimebsimcmgparameterextractionofnsfetswithmultiplestructuralvariations
AT sanguklee multitasklearningforrealtimebsimcmgparameterextractionofnsfetswithmultiplestructuralvariations
AT hyeokyun multitasklearningforrealtimebsimcmgparameterextractionofnsfetswithmultiplestructuralvariations
AT yonghwanahn multitasklearningforrealtimebsimcmgparameterextractionofnsfetswithmultiplestructuralvariations
AT rockhyunbaek multitasklearningforrealtimebsimcmgparameterextractionofnsfetswithmultiplestructuralvariations