Paraflow: fast calorimeter simulations parameterized in upstream material configurations

Abstract We study whether machine-learning models for fast calorimeter simulations can learn meaningful representations of calorimeter signatures that account for variations in the full particle detector’s configuration. This may open new opportunities in high-energy physics measurements, for exampl...

Full description

Saved in:
Bibliographic Details
Main Authors: Johannes Erdmann, Jonas Kann, Florian Mausolf, Peter Wissmann
Format: Article
Language:English
Published: SpringerOpen 2025-08-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-025-14604-0
Tags: Add Tag
No Tags, Be the first to tag this record!