Using the Schwarz Alternating Method to Identify Critical Water-Resistant Thickness between Tunnel and Concealed Cavity

This paper aims to estimate the stability of the water-resistant strata between the tunnel and the small-medium-sized concealed cavity filled with high-pressurized water or other fillings at optional position around tunnel through solving the double-hole problem. The analytical method to identify th...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiaqi Guo, Jianxun Chen, Fan Chen, Shanxiu Huang, Hongyu Wang
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2018/8401482
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper aims to estimate the stability of the water-resistant strata between the tunnel and the small-medium-sized concealed cavity filled with high-pressurized water or other fillings at optional position around tunnel through solving the double-hole problem. The analytical method to identify the critical water-resistant thickness is proposed based on the Schwarz alternating method and Griffith strength criterion, and the program to calculate the critical thickness was prepared according to this method using mathematical software. Parametric study of the critical thickness indicates that the critical water-resistant thickness will increase with the buried depth of the tunnel and cavity size; the lateral pressure coefficient has more complicated influence on the critical thickness, which is affected by cavity position; when the cavity is filled with sand or gravel, the critical water-resistant thickness will decrease with the increase of the filling pressure; and when the cavity is filled with the high-pressurized water, the critical thickness will decrease as the water pressure initially and increase afterwards. The analytical result of the critical thickness is consistent with that obtained by numerical simulation using the user-defined program based on FLAC3D, demonstrating the rationality and feasibility of the proposed method in this study.
ISSN:1687-8086
1687-8094