Plasticity of Tiller Dynamics in Wild Rice Oryza rufipogon Griff.: A Strategy for Resilience in Suboptimal Environments
Rice cultivation in tropical Asia is susceptible to drought and flood and the need is high for stress resistant genes. Wild rice Oryza rufipogon Griff., grows in close sympatric association with cultivated rice in various habitats across the globe and possesses traits for survival under challenging...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2011-01-01
|
| Series: | International Journal of Agronomy |
| Online Access: | http://dx.doi.org/10.1155/2011/543237 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Rice cultivation in tropical Asia is susceptible to drought and flood and the need is high for stress resistant genes. Wild rice Oryza rufipogon Griff., grows in close sympatric association with cultivated rice in various habitats across the globe and possesses traits for survival under challenging environments. The species adapts according to the level of soil moisture available and modifies phenology, biomass production and grain yield. Variation in tiller dynamics of the species between contrasting environments gives an estimate of the adaptation. The species possesses AA genome, which permits genetic compatibility for cross breeding with cultivated rice. Utility of the species as possible repository of stress resistant genes is evaluated in this review by examining variation in assimilate partitioning between different classes of tillers of ecotypes growing across a gradation of habitats against background knowledge available for cultivated rice. Models have been constructed to explain mechanisms of tillering and tiller dynamics, and reveal the genotypic permissibility for resilience in sub-optimal environments. It is concluded that environmentally cued alteration in assimilate production and partitioning mask genetic potential for tiller production and survival. Tiller number in excess of resource capacity is corrected by senescence of late-tillers possibly through an ethylene-mediated signal. |
|---|---|
| ISSN: | 1687-8159 1687-8167 |