Neighborhood-scale reductions in heatwave burden projected under a 30% minimum tree cover scenario
Abstract Cities pursuing nature-based solutions to mitigate heatwaves need tools to estimate cooling benefits from increased tree canopy cover. This study applied the i-Tree Cool Air model and a heatwave degree day (HWDD) metric to quantify reductions in heatwave severity if neighborhoods in 10 Ital...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | npj Urban Sustainability |
| Online Access: | https://doi.org/10.1038/s42949-025-00219-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Cities pursuing nature-based solutions to mitigate heatwaves need tools to estimate cooling benefits from increased tree canopy cover. This study applied the i-Tree Cool Air model and a heatwave degree day (HWDD) metric to quantify reductions in heatwave severity if neighborhoods in 10 Italian cities achieved the recommended minimum 30% tree cover. The scenario focused on establishing functional urban forests, with additional canopy placed over permeable surfaces to enhance stormwater infiltration and evapotranspiration-based cooling. Despite dry summer conditions, the 30% tree cover scenario reduced HWDD by a median of 34% (range: 16–84%), translating into comparable reductions (median 36%) in heatwave-related mortality for those aged 65 + . The tree cover generated new ecosystem service benefits valued at $10 million per city (range: $2–$62 million) through avoided stormwater runoff, air pollution removal, and carbon sequestration. Results consider drought constraints and potential irrigation trade-offs, including exacerbation of humid heat extremes. |
|---|---|
| ISSN: | 2661-8001 |