A NEW GENERALIZATION OF GEORGE & VEERAMANI-TYPE FUZZY METRIC SPACE

In this article, a concept of fuzzy F -metric space, which is a generalization of George & Veeramani-type fuzzy metric space, is introduced. Concepts of convergent sequence, Cauchy sequence, completeness etc. are given, and we study some properties in such spaces. Finally, some topological resul...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Das, D. Barman, T. Bag
Format: Article
Language:English
Published: Petrozavodsk State University 2024-11-01
Series:Проблемы анализа
Subjects:
Online Access:https://issuesofanalysis.petrsu.ru/article/genpdf.php?id=16071&lang=en
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832583625791504384
author A. Das
D. Barman
T. Bag
author_facet A. Das
D. Barman
T. Bag
author_sort A. Das
collection DOAJ
description In this article, a concept of fuzzy F -metric space, which is a generalization of George & Veeramani-type fuzzy metric space, is introduced. Concepts of convergent sequence, Cauchy sequence, completeness etc. are given, and we study some properties in such spaces. Finally, some topological results are established.
format Article
id doaj-art-e35af1d535ca486d9bb89a3f150df5c7
institution Kabale University
issn 2306-3424
2306-3432
language English
publishDate 2024-11-01
publisher Petrozavodsk State University
record_format Article
series Проблемы анализа
spelling doaj-art-e35af1d535ca486d9bb89a3f150df5c72025-01-28T10:38:37ZengPetrozavodsk State UniversityПроблемы анализа2306-34242306-34322024-11-0113 (31)322210.15393/j3.art.2024.16071A NEW GENERALIZATION OF GEORGE & VEERAMANI-TYPE FUZZY METRIC SPACEA. Das0D. Barman1T. Bag2Department of Mathematics, Siksha-Bhavana, Visva-BharatiDepartment of Mathematics, Siksha-Bhavana, Visva-BharatiDepartment of Mathematics, Siksha-Bhavana, Visva-BharatiIn this article, a concept of fuzzy F -metric space, which is a generalization of George & Veeramani-type fuzzy metric space, is introduced. Concepts of convergent sequence, Cauchy sequence, completeness etc. are given, and we study some properties in such spaces. Finally, some topological results are established.https://issuesofanalysis.petrsu.ru/article/genpdf.php?id=16071&lang=en𝑡-normfuzzy metricfuzzy b-metricfuzzy f -metric
spellingShingle A. Das
D. Barman
T. Bag
A NEW GENERALIZATION OF GEORGE & VEERAMANI-TYPE FUZZY METRIC SPACE
Проблемы анализа
𝑡-norm
fuzzy metric
fuzzy b-metric
fuzzy f -metric
title A NEW GENERALIZATION OF GEORGE & VEERAMANI-TYPE FUZZY METRIC SPACE
title_full A NEW GENERALIZATION OF GEORGE & VEERAMANI-TYPE FUZZY METRIC SPACE
title_fullStr A NEW GENERALIZATION OF GEORGE & VEERAMANI-TYPE FUZZY METRIC SPACE
title_full_unstemmed A NEW GENERALIZATION OF GEORGE & VEERAMANI-TYPE FUZZY METRIC SPACE
title_short A NEW GENERALIZATION OF GEORGE & VEERAMANI-TYPE FUZZY METRIC SPACE
title_sort new generalization of george veeramani type fuzzy metric space
topic 𝑡-norm
fuzzy metric
fuzzy b-metric
fuzzy f -metric
url https://issuesofanalysis.petrsu.ru/article/genpdf.php?id=16071&lang=en
work_keys_str_mv AT adas anewgeneralizationofgeorgeveeramanitypefuzzymetricspace
AT dbarman anewgeneralizationofgeorgeveeramanitypefuzzymetricspace
AT tbag anewgeneralizationofgeorgeveeramanitypefuzzymetricspace
AT adas newgeneralizationofgeorgeveeramanitypefuzzymetricspace
AT dbarman newgeneralizationofgeorgeveeramanitypefuzzymetricspace
AT tbag newgeneralizationofgeorgeveeramanitypefuzzymetricspace