Ti3AlC2−yNy carbonitride MAX phase solid solutions with tunable mechanical, thermal, and electrical properties
Changing the N content in the Ti3AlC2−yNy MAX phase solid solutions allows for the fine-tuning of their properties. However, systematic studies on the synthesis and properties of Ti3AlC2−yNy solid solution bulks have not been reported thus far. Here, previously reported Ti3AlC2−yNy solid solution bu...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Tsinghua University Press
2024-09-01
|
| Series: | Journal of Advanced Ceramics |
| Subjects: | |
| Online Access: | https://www.sciopen.com/article/10.26599/JAC.2024.9220951 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Changing the N content in the Ti3AlC2−yNy MAX phase solid solutions allows for the fine-tuning of their properties. However, systematic studies on the synthesis and properties of Ti3AlC2−yNy solid solution bulks have not been reported thus far. Here, previously reported Ti3AlC2−yNy solid solution bulks (y = 0.3, 0.5, 0.8, and 1.0) were synthesized via hot pressing of their powder counterparts under optimized conditions. The prepared Ti3AlC2−yNy bulks are dense and have a fine microstructure with grain sizes of 6–8 μm. The influence of the N content on the mechanical properties, electrical conductivities, and coefficients of thermal expansion (CTEs) of the prepared Ti3AlC2−yNy bulk materials was clarified. The flexural strength and Vickers hardness values increased with increasing N content, suggesting that solid solution strengthening effectively improved the mechanical properties of Ti3AlC2−yNy. Ti3AlCN (y = 1) had the highest Vickers hardness and flexural strength among the studied samples, reaching 5.54 GPa and 550 MPa, respectively. However, the electrical conductivity and CTEs of the Ti3AlC2−yNy solid solutions decreased with increasing N content, from 8.93×10−6 to 7.69×10−6 K−1 and from 1.33×106 to 0.95×106 S/m, respectively. This work demonstrated the tunable properties of Ti3AlC2−yNy solid solutions with varying N contents and widened the MAX phase family for fundamental studies and applications. |
|---|---|
| ISSN: | 2226-4108 2227-8508 |