Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra

In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Yang, Xingtao Wang
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589150730059776
author Yu Yang
Xingtao Wang
author_facet Yu Yang
Xingtao Wang
author_sort Yu Yang
collection DOAJ
description In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula>. Additionally, we prove that all LB structures on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> possess a triangular coboundary. We also quantize <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> using the Drinfeld-twist quantization technique and identify a group of noncommutative algebras and noncocommutative Hopf algebras.
format Article
id doaj-art-e336ca7523294978966bd60ff098114e
institution Kabale University
issn 2075-1680
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-e336ca7523294978966bd60ff098114e2025-01-24T13:22:07ZengMDPI AGAxioms2075-16802024-12-01141710.3390/axioms14010007Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal AlgebraYu Yang0Xingtao Wang1School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, ChinaDepartment of Mathematics, Harbin Institute of Technology, Harbin 150001, ChinaIn this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula>. Additionally, we prove that all LB structures on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> possess a triangular coboundary. We also quantize <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> using the Drinfeld-twist quantization technique and identify a group of noncommutative algebras and noncocommutative Hopf algebras.https://www.mdpi.com/2075-1680/14/1/7generalized loop planar-Galilean conformal algebraLie bialgebraquantization
spellingShingle Yu Yang
Xingtao Wang
Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra
Axioms
generalized loop planar-Galilean conformal algebra
Lie bialgebra
quantization
title Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra
title_full Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra
title_fullStr Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra
title_full_unstemmed Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra
title_short Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra
title_sort lie bialgebra structures and quantization of generalized loop planar galilean conformal algebra
topic generalized loop planar-Galilean conformal algebra
Lie bialgebra
quantization
url https://www.mdpi.com/2075-1680/14/1/7
work_keys_str_mv AT yuyang liebialgebrastructuresandquantizationofgeneralizedloopplanargalileanconformalalgebra
AT xingtaowang liebialgebrastructuresandquantizationofgeneralizedloopplanargalileanconformalalgebra