Adaptation to Soil Conditions of in vitro Regenerated Birch Lines Selected for Salinity Resistance
Tissue and cellular plant in vitro breeding is a promising trend that complements and accelerates traditional breeding. Stress modelling under strictly controlled conditions on selective media allows for selection based on resistance to negative environmental factors (including drought and salinity)...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Northern Arctic Federal University
2025-06-01
|
| Series: | Лесной журнал |
| Subjects: | |
| Online Access: | https://journals.narfu.ru/index.php/fj/article/view/2236 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Tissue and cellular plant in vitro breeding is a promising trend that complements and accelerates traditional breeding. Stress modelling under strictly controlled conditions on selective media allows for selection based on resistance to negative environmental factors (including drought and salinity), and preserving and cloning in vitro of selected variants with the desired traits. For forest woody plants, issues related to the adaptation of tolerant genotypes to ex vitro conditions have not been sufficiently studied. This research examines the adaptation features to non-sterile soil conditions of 3 birch lines: downy birch, Karelian birch and Ornäs birch selected through in vitro culture for resistance to salinity (NaCl and Cd(NO3)2). The survival rate, growth and development of plants have been evaluated depending on age, substrate composition and adaptation patterns. It has been revealed that for birch regenerants to successfully survive in soil conditions, their preparation for this stage should begin at the stage of micropropagation. The expediency of using ½ MS nutrient medium without hormones to obtain regenerants with active spontaneous rhizogenesis, normal growth and development, without signs of somaclonal variability, balanced in size shoots and root system has been shown. The highest ex vitro survival rate (on average 97–99 %) has been obtained with a 2-stage plant adaptation scheme for plants: 14 days in laboratory conditions, then 14 days in a greenhouse (compared to 1-stage adaptation – 28 days in the laboratory), followed by planting in May in protected soil of a greenhouse. The preferred planting of 1-month-old regenerants 4.5–6 cm high in containers with a substrate of peat soil combined with perlite in a ratio of 3:1 has been shown. All 3 lines have shown active lateral root branching, with an average of 6–7 roots 1st-order roots and 18–29 2nd-order roots. Apparently, a lower short-term nighttime temperature in the greenhouse in spring compared to the daytime one stimulates the formation of a developed branched root system. This ensures a better supply of water and nutrients to plants, contributing to the full realization of their adaptive potential. After 1 to 2 years of further growing in a greenhouse, salinity-resistant seedlings have corresponded to the sizes of standard planting material, which can be used for protective afforestation and the creation of test crops. |
|---|---|
| ISSN: | 0536-1036 |