Pynblint: A quality assurance tool to improve the quality of Python Jupyter notebooks
Jupyter Notebook is widely recognized as a crucial tool for data science professionals and students. Its interactive and self-documenting nature makes it particularly suitable for data-driven programming tasks. Nonetheless, it faces criticism for its limited support for software engineering best pra...
Saved in:
| Main Authors: | Luigi Quaranta, Fabio Calefato, Filippo Lanubile |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | SoftwareX |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2352711024003297 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Python-Programmierung und Algorithmen mit Jupyter Notebooks: Ein Praxisbeispiel aus dem Informatikunterricht
by: Joachim Kutzera, et al.
Published: (2025-03-01) -
Interactive Earth system data cube visualization in Jupyter notebooks
by: Maximilian Söchting, et al.
Published: (2025-04-01) -
Automated Assessment of Quality of Jupyter Notebooks Using Artificial Intelligence and Big Code
by: Priti Oli, et al.
Published: (2021-04-01) -
Застосування інтерактивного середовища Jupyter Notebook при проведенні інтегрованих уроків з інформатики та математики
by: Ярослав Крупський, et al.
Published: (2025-05-01) -
FAIR Jupyter: A Knowledge Graph Approach to Semantic Sharing and Granular Exploration of a Computational Notebook Reproducibility Dataset
by: Samuel, Sheeba, et al.
Published: (2024-12-01)