First Electrochemical Method of Nitrothal-Isopropyl Determination in Water Samples
The aim of the research was the use of square wave adsorptive stripping voltammetry (SWAdSV) in conjunction with a hanging mercury drop electrode (HMDE) for the determination of nitrothal-isopropyl. It was found that optimal SW technique parameters were frequency, 200 Hz; amplitude, 50 mV; and step...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2016-01-01
|
| Series: | Journal of Chemistry |
| Online Access: | http://dx.doi.org/10.1155/2016/6045347 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The aim of the research was the use of square wave adsorptive stripping voltammetry (SWAdSV) in conjunction with a hanging mercury drop electrode (HMDE) for the determination of nitrothal-isopropyl. It was found that optimal SW technique parameters were frequency, 200 Hz; amplitude, 50 mV; and step potential, 5 mV. Accumulation time and potential were studied to select the optimal conditions in adsorptive stripping voltammetry: 45 s at 0.0 V, respectively. The calibration curve (SWSV) was linear in the nitrothal-isopropyl concentration range from 2.0 × 10−7 to 2.0 × 10−6 mol L−1 with detection limit of 3.46 × 10−8 mol L−1. The repeatability of the method was determined at a nitrothal-isopropyl concentration level equal to 6.0 × 10−7 mol L−1 and expressed as RSD = 5.5% (n=6). The proposed method was successfully validated by studying the recovery of nitrothal-isopropyl in spiked environmental samples. |
|---|---|
| ISSN: | 2090-9063 2090-9071 |