On Riemann–Liouville Integral via Strongly Modified (<i>h</i>,<i>m</i>)-Convex Functions

The generalization of strongly convex and strongly <i>m</i>-convex functions is presented in this paper. We began by proving the properties of a strongly modified <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semanti...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali N. A. Koam, Ammara Nosheen, Khuram Ali Khan, Mudassir Hussain Bukhari, Ali Ahmad, Maryam Salem Alatawi
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/8/12/680
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850049789535715328
author Ali N. A. Koam
Ammara Nosheen
Khuram Ali Khan
Mudassir Hussain Bukhari
Ali Ahmad
Maryam Salem Alatawi
author_facet Ali N. A. Koam
Ammara Nosheen
Khuram Ali Khan
Mudassir Hussain Bukhari
Ali Ahmad
Maryam Salem Alatawi
author_sort Ali N. A. Koam
collection DOAJ
description The generalization of strongly convex and strongly <i>m</i>-convex functions is presented in this paper. We began by proving the properties of a strongly modified <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>h</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula>-convex function. The Schur inequality and the Hermite–Hadamard (H-H) inequalities are proved for the proposed class. Moreover, H-H inequalities are also proved in the context of Riemann–Liouville (R-L) integrals. Some examples and graphs are also presented in order to show the existence of this newly defined class.
format Article
id doaj-art-e3006eb3cbb641dcac22d422d7eb2c8f
institution DOAJ
issn 2504-3110
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj-art-e3006eb3cbb641dcac22d422d7eb2c8f2025-08-20T02:53:38ZengMDPI AGFractal and Fractional2504-31102024-11-0181268010.3390/fractalfract8120680On Riemann–Liouville Integral via Strongly Modified (<i>h</i>,<i>m</i>)-Convex FunctionsAli N. A. Koam0Ammara Nosheen1Khuram Ali Khan2Mudassir Hussain Bukhari3Ali Ahmad4Maryam Salem Alatawi5Department of Mathematics, College of Science, Jazan University, Jazan 45142, Saudi ArabiaDepartment of Mathematics, University of Sargodha, Sargodha 40100, PakistanDepartment of Mathematics, University of Sargodha, Sargodha 40100, PakistanDepartment of Mathematics, University of Sargodha, Sargodha 40100, PakistanDepartment of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan 45142, Saudi ArabiaDepartment of Mathematics, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi ArabiaThe generalization of strongly convex and strongly <i>m</i>-convex functions is presented in this paper. We began by proving the properties of a strongly modified <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>h</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></semantics></math></inline-formula>-convex function. The Schur inequality and the Hermite–Hadamard (H-H) inequalities are proved for the proposed class. Moreover, H-H inequalities are also proved in the context of Riemann–Liouville (R-L) integrals. Some examples and graphs are also presented in order to show the existence of this newly defined class.https://www.mdpi.com/2504-3110/8/12/680convex function (CF)schur inequalityHermite–Hadamard inequalities
spellingShingle Ali N. A. Koam
Ammara Nosheen
Khuram Ali Khan
Mudassir Hussain Bukhari
Ali Ahmad
Maryam Salem Alatawi
On Riemann–Liouville Integral via Strongly Modified (<i>h</i>,<i>m</i>)-Convex Functions
Fractal and Fractional
convex function (CF)
schur inequality
Hermite–Hadamard inequalities
title On Riemann–Liouville Integral via Strongly Modified (<i>h</i>,<i>m</i>)-Convex Functions
title_full On Riemann–Liouville Integral via Strongly Modified (<i>h</i>,<i>m</i>)-Convex Functions
title_fullStr On Riemann–Liouville Integral via Strongly Modified (<i>h</i>,<i>m</i>)-Convex Functions
title_full_unstemmed On Riemann–Liouville Integral via Strongly Modified (<i>h</i>,<i>m</i>)-Convex Functions
title_short On Riemann–Liouville Integral via Strongly Modified (<i>h</i>,<i>m</i>)-Convex Functions
title_sort on riemann liouville integral via strongly modified i h i i m i convex functions
topic convex function (CF)
schur inequality
Hermite–Hadamard inequalities
url https://www.mdpi.com/2504-3110/8/12/680
work_keys_str_mv AT alinakoam onriemannliouvilleintegralviastronglymodifiedihiimiconvexfunctions
AT ammaranosheen onriemannliouvilleintegralviastronglymodifiedihiimiconvexfunctions
AT khuramalikhan onriemannliouvilleintegralviastronglymodifiedihiimiconvexfunctions
AT mudassirhussainbukhari onriemannliouvilleintegralviastronglymodifiedihiimiconvexfunctions
AT aliahmad onriemannliouvilleintegralviastronglymodifiedihiimiconvexfunctions
AT maryamsalemalatawi onriemannliouvilleintegralviastronglymodifiedihiimiconvexfunctions