Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-depend...

Full description

Saved in:
Bibliographic Details
Main Authors: P. Anandan, N. Malathi, N. Mohankumar
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Modelling and Simulation in Engineering
Online Access:http://dx.doi.org/10.1155/2014/635803
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.
ISSN:1687-5591
1687-5605