Facile green synthesis of plant-mediated selenium nanoparticles (SeNPs) using Moringa oleifera leaf and bark extract for targeting α-amylase and α-glucosidase enzymes in diabetes management

In recent years, nanoparticle synthesis innovations have focused on developing simple, cost-effective, non-toxic, and eco-friendly methods. This study investigates the green synthesis of selenium nanoparticles (SeNPs) using aqueous extracts of Moringa oleifera leaves (ML) and bark (MB) via the preci...

Full description

Saved in:
Bibliographic Details
Main Authors: Ayonposi Bukola Olaoye, Seun Samuel Owoeye, James Sylvester Nwobegu
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Hybrid Advances
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2773207X24001428
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, nanoparticle synthesis innovations have focused on developing simple, cost-effective, non-toxic, and eco-friendly methods. This study investigates the green synthesis of selenium nanoparticles (SeNPs) using aqueous extracts of Moringa oleifera leaves (ML) and bark (MB) via the precipitation method. The synthesized SeNPs were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). TEM analysis revealed the formation of approximately spherical particles with average sizes ranging from 10.47 nm to 28.5 nm for SeNPs synthesized with ML (SeNPsML) and 15.47 nm–32.83 nm for those with MB (SeNPsMB). XRD analysis indicated that SeNPsMB were predominantly crystalline, while SeNPsML were mainly amorphous with a few crystalline peaks. Morphological studies showed spherically shaped particles with a high degree of agglomeration, evenly distributed throughout the matrix. SeNPsMB exhibited higher dose-dependent inhibition of α-amylase and α-glucosidase compared to SeNPsML, likely due to differences in nanoparticle size and form. These findings suggest that SeNPsMB may possess superior antidiabetic activity.
ISSN:2773-207X