Beyond BMI: An opinion on the clinical value of AI-powered CT body composition analysis
Body Mass Index (BMI) has long been used as a standard measure for assessing population-level health risks, but its clinical adequacy has increasingly been called into question. This opinion paper challenges the clinical adequacy of BMI and presents AI-enhanced CT body composition analysis as a sup...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Association of Basic Medical Sciences of Federation of Bosnia and Herzegovina
2025-07-01
|
| Series: | Biomolecules & Biomedicine |
| Subjects: | |
| Online Access: | https://www.bjbms.org/ojs/index.php/bjbms/article/view/12774 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Body Mass Index (BMI) has long been used as a standard measure for assessing population-level health risks, but its clinical adequacy has increasingly been called into question. This opinion paper challenges the clinical adequacy of BMI and presents AI-enhanced CT body composition analysis as a superior alternative for individualized risk assessment. While BMI serves population-level screening, its inability to differentiate between tissue types leads to critical misclassifications, particularly for sarcopenic obesity. AI-powered analysis of CT imaging at the L3 vertebra level provides precise quantification of skeletal muscle index, visceral, and subcutaneous adipose tissues -metrics that consistently outperform BMI in predicting outcomes across oncology, cardiology, and critical care. Recent technological advances have transformed this approach: the "opportunistic" use of existing clinical CT scans eliminates radiation concerns, while AI automation has reduced analysis time from 15-20 minutes to mere seconds. These innovations effectively address previous implementation barriers and enable practical clinical application with minimal resource demands, creating opportunities for targeted interventions and personalized care pathways.
|
|---|---|
| ISSN: | 2831-0896 2831-090X |