MnO Recovered from Alkaline Batteries Functionalized with Ruthenium and Carbon Nanofibers for Supercapacitor Applications

MnO is an attractive material due to its high specific capacitance and thermal and chemical activity. It can be recycled from alkaline batteries with a good yield and can be used for supercapacitor applications after enhancing its poor conductivity. In this study, Ru-MnO-Carbon nanofibers(Ru-MnO-CNF...

Full description

Saved in:
Bibliographic Details
Main Authors: Faraz Khan, Renata Adami, Luca Gallucci, Claudia Cirillo, Mariagrazia Iuliano, Libero Sesti Osséo, Maria Sarno
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Engineering Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4591/90/1/71
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MnO is an attractive material due to its high specific capacitance and thermal and chemical activity. It can be recycled from alkaline batteries with a good yield and can be used for supercapacitor applications after enhancing its poor conductivity. In this study, Ru-MnO-Carbon nanofibers(Ru-MnO-CNFs) were prepared by the impregnation of Ru (1 wt%) into MnO recovered from used alkaline batteries, followed by their incorporation into polyacrylnitrile (PAN) nanofibers by electrospinning and carbonization. The prepared materials, Ru-MnO and Ru-MnO-CNFs, were characterized by scanning electron microscopy and Fourier infrared spectroscopy. The electrochemical characterization was performed, comparing the characteristics of Ru-MnO and Ru-MnO-CNFs samples. It was found that the capacitance of MnO recovered from used alkaline batteries could be enhanced by combining it with Ru and CNFs. The hybrid Ru-MnO/CNFs composite could be used as stable electrode material for high performance supercapacitors.
ISSN:2673-4591