Mechanism Study of Two-Dimensional Precipitation Diagnostic Models Within a Dynamic Framework

This study investigates the formation and triggering mechanisms of precipitation processes. Given the substantial effort required to construct a 3D model, we developed an idealized 2D precipitation scenario, using a simplified dynamical framework with vortex wind fields as the background atmospheric...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiangqian Wei, Yi Liu, Xinyu Chang, Jun Guo, Haochuan Li
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/16/4/380
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the formation and triggering mechanisms of precipitation processes. Given the substantial effort required to construct a 3D model, we developed an idealized 2D precipitation scenario, using a simplified dynamical framework with vortex wind fields as the background atmospheric flow field. By modeling the transport, uplift, and subsidence of water vapor and liquid water, a condensation model was developed to simulate air parcel uplift and high-altitude water vapor condensation. Further, a cloud microphysics precipitation scheme was incorporated to simulate precipitation triggering and falling processes following water vapor condensation. Model results demonstrate that the approach accurately reproduces key processes of water vapor transport, condensation, and precipitation formation. With a time step of 15 s and a total of 120 steps, the simulation of a 30-min scenario was completed in just 158.5 s, indicating the high computational efficiency of the model. This paper introduces an innovative research scheme for a diagnostic model. Upon technological maturity, the model will utilize radar wind field data as its input to evaluate and enhance the performance of precipitation diagnostic models in real weather processes. This research lays a solid foundation for the further refinement and optimization of precipitation forecasting models, thereby advancing the accuracy of weather prediction.
ISSN:2073-4433