Enhancing Drone Navigation and Control: Gesture-Based Piloting, Obstacle Avoidance, and 3D Trajectory Mapping

Autonomous drone navigation presents challenges for users unfamiliar with manual flight controls, increasing the risk of collisions. This research addresses this issue by developing a multifunctional drone control system that integrates hand gesture recognition, obstacle avoidance, and 3D mapping to...

Full description

Saved in:
Bibliographic Details
Main Authors: Ben Taylor, Mathew Allen, Preston Henson, Xu Gao, Haroon Malik, Pingping Zhu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7340
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Autonomous drone navigation presents challenges for users unfamiliar with manual flight controls, increasing the risk of collisions. This research addresses this issue by developing a multifunctional drone control system that integrates hand gesture recognition, obstacle avoidance, and 3D mapping to improve accessibility and safety. The system utilizes Google’s MediaPipe Hands software library, which employs machine learning to track 21 key landmarks of the user’s hand, enabling gesture-based control of the drone. Each recognized gesture is mapped to a flight command, eliminating the need for a traditional controller. The obstacle avoidance system, utilizing the Flow Deck V2 and Multi-Ranger Deck, detects objects within a safety threshold and autonomously moves the drone by a predefined avoidance distance away to prevent collisions. A mapping system continuously logs the drone’s flight path and detects obstacles, enabling 3D visualization of drone’s trajectory after the drone landing. Also, an AI-Deck streams live video, enabling navigation beyond the user’s direct line of sight. Experimental validation with the Crazyflie drone demonstrates seamless integration of these systems, providing a beginner-friendly experience where users can fly drones safely without prior expertise. This research enhances human–drone interaction, making drone technology more accessible for education, training, and intuitive navigation.
ISSN:2076-3417