Holographic timelike entanglement entropy in non-relativistic theories

Abstract Timelike entanglement entropy is a complex measure of information that is holographically realized by an appropriate combination of spacelike and timelike extremal surfaces. This measure is highly sensitive to Lorentz invariance breaking. In this work, we study the timelike entanglement ent...

Full description

Saved in:
Bibliographic Details
Main Authors: Mir Afrasiar, Jaydeep Kumar Basak, Dimitrios Giataganas
Format: Article
Language:English
Published: SpringerOpen 2025-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP05(2025)205
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Timelike entanglement entropy is a complex measure of information that is holographically realized by an appropriate combination of spacelike and timelike extremal surfaces. This measure is highly sensitive to Lorentz invariance breaking. In this work, we study the timelike entanglement entropy in non-relativistic theories, focusing on theories with hyperscaling violation and Lifshitz-like spatial anisotropy. The properties of the extremal surfaces, as well as the timelike entanglement entropy itself, depend heavily on the symmetry-breaking parameters of the theory. Consequently, we show that timelike entanglement can encode, to a large extent, the stability and naturalness of the theory. Furthermore, we find that timelike entanglement entropy identifies Fermi surfaces either through the logarithmic behavior of its real part or, alternatively, via its constant imaginary part, with this constant value depending on the theory’s Lifshitz exponent. This provides a novel interpretation for the imaginary component of this pseudoentropy. Additionally, we examine temporal entanglement entropy, an extension of timelike entanglement entropy to Euclidean space, and provide a comprehensive discussion of its properties in these theories.
ISSN:1029-8479