A Single DC Source Generalized Switched Capacitors Multilevel Inverter with Minimal Component Count

This paper presents a new single-source switched capacitor- (SC-) based multilevel inverter (MLI) design with a boosting potential of three times the supply voltage. To produce a waveform with seven output voltage levels, the suggested switching capacitor inverter consists of eight switches, single...

Full description

Saved in:
Bibliographic Details
Main Authors: Kasinath Jena, Dhananjay Kumar, B. Hemanth Kumar, K. Janardhan, Arvind R. Singh, Raj Naidoo, Ramesh C. Bansal
Format: Article
Language:English
Published: Wiley 2023-01-01
Series:International Transactions on Electrical Energy Systems
Online Access:http://dx.doi.org/10.1155/2023/3945160
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a new single-source switched capacitor- (SC-) based multilevel inverter (MLI) design with a boosting potential of three times the supply voltage. To produce a waveform with seven output voltage levels, the suggested switching capacitor inverter consists of eight switches, single diode, and two capacitors. Because capacitors are inherently balanced, there is no need for a balancing circuit or sensor. The structure can be expanded using the provided generalized equations. In addition, the technique for switching control and loss analyses is explored. A fair comparison with the most recent SCMLI topologies has been conducted to demonstrate the merits of the proposed work. Furthermore, the proposed topology is evaluated using the MATLAB/SIMULINK tool, and experiments under both transient and steady-state situations are performed to demonstrate its feasibility. At dynamic-loaded situations, the performance of the proposed SCMLI with dynamic modulation index and switching frequency is tested.
ISSN:2050-7038