Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations

In this paper, we examine the oscillatory behavior of solutions to a class of half-linear third-order dynamic equations with deviating arguments <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup>...

Full description

Saved in:
Bibliographic Details
Main Authors: Taher S. Hassan, Mnaouer Kachout, Bassant M. El-Matary, Loredana Florentina Iambor, Ismoil Odinaev, Akbar Ali
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/23/3740
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850106603553947648
author Taher S. Hassan
Mnaouer Kachout
Bassant M. El-Matary
Loredana Florentina Iambor
Ismoil Odinaev
Akbar Ali
author_facet Taher S. Hassan
Mnaouer Kachout
Bassant M. El-Matary
Loredana Florentina Iambor
Ismoil Odinaev
Akbar Ali
author_sort Taher S. Hassan
collection DOAJ
description In this paper, we examine the oscillatory behavior of solutions to a class of half-linear third-order dynamic equations with deviating arguments <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="{" close="}"><msub><mi>α</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow><msub><mi>ϕ</mi><msub><mi>δ</mi><mn>2</mn></msub></msub><mfenced separators="" open="(" close=")"><msup><mfenced separators="" open="[" close="]"><msub><mi>α</mi><mn>1</mn></msub><mfenced open="(" close=")"><mi>η</mi></mfenced><msub><mi>ϕ</mi><msub><mi>δ</mi><mn>1</mn></msub></msub><mfenced separators="" open="(" close=")"><msup><mi>u</mi><mo>Δ</mo></msup><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mfenced></mfenced><mo>Δ</mo></msup></mfenced></mfenced><mo>Δ</mo></msup><mo>+</mo><mi>p</mi><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow><msub><mi>ϕ</mi><mi>δ</mi></msub><mfenced separators="" open="(" close=")"><mi>u</mi><mo>(</mo><mi>g</mi><mo>(</mo><mi>η</mi><mo>)</mo><mo>)</mo></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> on an arbitrary unbounded-above time scale <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</mi></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>∈</mo><msub><mrow><mo>[</mo><msub><mi>η</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mi mathvariant="double-struck">T</mi></msub><mo>:</mo><mo>=</mo><mrow><mo>[</mo><msub><mi>η</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mo>∩</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mn>0</mn></msub><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mn>0</mn></msub><mo>∈</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>ζ</mi></msub><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><msup><mfenced open="|" close="|"><mi>w</mi></mfenced><mi>ζ</mi></msup><mspace width="3.33333pt"></mspace><mi>sgn</mi><mi>w</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ζ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. Using the integral mean approach and the known Riccati transform methodology, several improved Hille-type and Ohriska-type oscillation criteria have been derived that do not require some restrictive assumptions in the relevant results. Illustrative examples and conclusions show that these criteria are sharp for all third-order dynamic equations compared to the previous results in the literature.
format Article
id doaj-art-e218832aee194b8d9da1393761c3ef36
institution OA Journals
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-e218832aee194b8d9da1393761c3ef362025-08-20T02:38:47ZengMDPI AGMathematics2227-73902024-11-011223374010.3390/math12233740Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic EquationsTaher S. Hassan0Mnaouer Kachout1Bassant M. El-Matary2Loredana Florentina Iambor3Ismoil Odinaev4Akbar Ali5Department of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi ArabiaDepartment of Computer Engineering, College of Computer Science and Engineering, University of Ha’il, Hail 2440, Saudi ArabiaDepartment of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi ArabiaDepartment of Mathematics and Computer Science, University of Oradea, 410087 Oradea, RomaniaDepartment of Automated Electrical Systems, Ural Power Engineering Institute, Ural Federal University, 620002 Yekaterinburg, RussiaDepartment of Mathematics, College of Science, University of Ha’il, Ha’il 2440, Saudi ArabiaIn this paper, we examine the oscillatory behavior of solutions to a class of half-linear third-order dynamic equations with deviating arguments <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="{" close="}"><msub><mi>α</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow><msub><mi>ϕ</mi><msub><mi>δ</mi><mn>2</mn></msub></msub><mfenced separators="" open="(" close=")"><msup><mfenced separators="" open="[" close="]"><msub><mi>α</mi><mn>1</mn></msub><mfenced open="(" close=")"><mi>η</mi></mfenced><msub><mi>ϕ</mi><msub><mi>δ</mi><mn>1</mn></msub></msub><mfenced separators="" open="(" close=")"><msup><mi>u</mi><mo>Δ</mo></msup><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mfenced></mfenced><mo>Δ</mo></msup></mfenced></mfenced><mo>Δ</mo></msup><mo>+</mo><mi>p</mi><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow><msub><mi>ϕ</mi><mi>δ</mi></msub><mfenced separators="" open="(" close=")"><mi>u</mi><mo>(</mo><mi>g</mi><mo>(</mo><mi>η</mi><mo>)</mo><mo>)</mo></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> on an arbitrary unbounded-above time scale <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</mi></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>∈</mo><msub><mrow><mo>[</mo><msub><mi>η</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mi mathvariant="double-struck">T</mi></msub><mo>:</mo><mo>=</mo><mrow><mo>[</mo><msub><mi>η</mi><mn>0</mn></msub><mo>,</mo><mo>∞</mo><mo>)</mo></mrow><mo>∩</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mn>0</mn></msub><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mn>0</mn></msub><mo>∈</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>ζ</mi></msub><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mo>:</mo><mo>=</mo><msup><mfenced open="|" close="|"><mi>w</mi></mfenced><mi>ζ</mi></msup><mspace width="3.33333pt"></mspace><mi>sgn</mi><mi>w</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ζ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. Using the integral mean approach and the known Riccati transform methodology, several improved Hille-type and Ohriska-type oscillation criteria have been derived that do not require some restrictive assumptions in the relevant results. Illustrative examples and conclusions show that these criteria are sharp for all third-order dynamic equations compared to the previous results in the literature.https://www.mdpi.com/2227-7390/12/23/3740oscillation criteriaHille-typeOhriska-typedifferential equationsdynamic equationstime scales
spellingShingle Taher S. Hassan
Mnaouer Kachout
Bassant M. El-Matary
Loredana Florentina Iambor
Ismoil Odinaev
Akbar Ali
Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations
Mathematics
oscillation criteria
Hille-type
Ohriska-type
differential equations
dynamic equations
time scales
title Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations
title_full Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations
title_fullStr Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations
title_full_unstemmed Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations
title_short Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations
title_sort improved hille type and ohriska type criteria for half linear third order dynamic equations
topic oscillation criteria
Hille-type
Ohriska-type
differential equations
dynamic equations
time scales
url https://www.mdpi.com/2227-7390/12/23/3740
work_keys_str_mv AT tahershassan improvedhilletypeandohriskatypecriteriaforhalflinearthirdorderdynamicequations
AT mnaouerkachout improvedhilletypeandohriskatypecriteriaforhalflinearthirdorderdynamicequations
AT bassantmelmatary improvedhilletypeandohriskatypecriteriaforhalflinearthirdorderdynamicequations
AT loredanaflorentinaiambor improvedhilletypeandohriskatypecriteriaforhalflinearthirdorderdynamicequations
AT ismoilodinaev improvedhilletypeandohriskatypecriteriaforhalflinearthirdorderdynamicequations
AT akbarali improvedhilletypeandohriskatypecriteriaforhalflinearthirdorderdynamicequations