Statistical characteristics of optical vortices and integral parameters of laser radiation on a wireless power transmission path

The aim of this study is to compare the parameters of laser beams, which initial phase is formed by Zernike polynomials, and beams, which phase is specified by a screen simulating atmospheric turbulence. The study was conducted due to the widespread use of laser radiation in energy and information t...

Full description

Saved in:
Bibliographic Details
Main Authors: Feodor Yu. Kanev, Nailia A. Makenova, Igor D. Veretekhin
Format: Article
Language:English
Published: Tomsk Polytechnic University 2024-09-01
Series:Известия Томского политехнического университета: Промышленная кибернетика
Subjects:
Online Access:https://indcyb.ru/journal/article/view/67/57
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study is to compare the parameters of laser beams, which initial phase is formed by Zernike polynomials, and beams, which phase is specified by a screen simulating atmospheric turbulence. The study was conducted due to the widespread use of laser radiation in energy and information transmission systems and the need to compensate for radiation distortions on atmospheric route. The solution of the set tasks was implemented based on the methods of numerical experiment. For the analysis in the plane of observation optical vortices, appeared during propagation, and radiation integral characteristics, such as the focusing criterion (power within a given aperture), energy radius and shift of the beam center, were recorded. It was shown that statistical parameters of the distribution of singular points in both cases (polynomials and screen) satisfied the requirements of the central limit theorem. At the same time, differences were observed in the dependence of the number of vortices and integral characteristics of radiation on the length of the propagation path.
ISSN:2949-5407