Prospects for AI clinical summarization to reduce the burden of patient chart review
Effective summarization of unstructured patient data in electronic health records (EHRs) is crucial for accurate diagnosis and efficient patient care, yet clinicians often struggle with information overload and time constraints. This review dives into recent literature and case studies on both the s...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2024-11-01
|
| Series: | Frontiers in Digital Health |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fdgth.2024.1475092/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Effective summarization of unstructured patient data in electronic health records (EHRs) is crucial for accurate diagnosis and efficient patient care, yet clinicians often struggle with information overload and time constraints. This review dives into recent literature and case studies on both the significant impacts and outstanding issues of patient chart review on communications, diagnostics, and management. It also discusses recent efforts to integrate artificial intelligence (AI) into clinical summarization tasks, and its transformative impact on the clinician’s potential, including but not limited to reductions of administrative burden and improved patient-centered care. Furthermore, it takes into account the numerous ethical challenges associated with integrating AI into clinical workflow, including biases, data privacy, and cybersecurity. |
|---|---|
| ISSN: | 2673-253X |