On a Class of Composition Operators on Bergman Space

Let &#x1D53B;={z∈ℂ:|z|<1} be the open unit disk in the complex plane ℂ. Let A2(&#x1D53B;) be the space of analytic functions on &#x1D53B; square integrable with respect to the measure dA(z)=(1/π)dx dy. Given a∈&#x1D53B; and f any measurable function on &#x1D53B;, we define the...

Full description

Saved in:
Bibliographic Details
Main Authors: Namita Das, R. P. Lal, C. K. Mohapatra
Format: Article
Language:English
Published: Wiley 2007-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2007/39819
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850165842324488192
author Namita Das
R. P. Lal
C. K. Mohapatra
author_facet Namita Das
R. P. Lal
C. K. Mohapatra
author_sort Namita Das
collection DOAJ
description Let &#x1D53B;={z∈ℂ:|z|<1} be the open unit disk in the complex plane ℂ. Let A2(&#x1D53B;) be the space of analytic functions on &#x1D53B; square integrable with respect to the measure dA(z)=(1/π)dx dy. Given a∈&#x1D53B; and f any measurable function on &#x1D53B;, we define the function Caf by Caf(z)=f(ϕa(z)), where ϕa∈Aut(&#x1D53B;). The map Ca is a composition operator on L2(&#x1D53B;,dA) and A2(&#x1D53B;) for all a∈&#x1D53B;. Let ℒ(A2(&#x1D53B;)) be the space of all bounded linear operators from A2(&#x1D53B;) into itself. In this article, we have shown that CaSCa=S for all a∈&#x1D53B; if and only if ∫&#x1D53B;S˜(ϕa(z))dA(a)=S˜(z), where S∈ℒ(A2(&#x1D53B;)) and S˜ is the Berezin symbol of S.
format Article
id doaj-art-e1efed27a6b8436e9d46f10008ab3411
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 2007-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-e1efed27a6b8436e9d46f10008ab34112025-08-20T02:21:38ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252007-01-01200710.1155/2007/3981939819On a Class of Composition Operators on Bergman SpaceNamita Das0R. P. Lal1C. K. Mohapatra2P. G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar, Orissa 751004, IndiaInstitute of Mathematics and Applications, 2nd Floor, Surya Kiran Building, Sahid Nagar, Bhubaneswar, Orissa 751007, IndiaInstitute of Mathematics and Applications, 2nd Floor, Surya Kiran Building, Sahid Nagar, Bhubaneswar, Orissa 751007, IndiaLet &#x1D53B;={z∈ℂ:|z|<1} be the open unit disk in the complex plane ℂ. Let A2(&#x1D53B;) be the space of analytic functions on &#x1D53B; square integrable with respect to the measure dA(z)=(1/π)dx dy. Given a∈&#x1D53B; and f any measurable function on &#x1D53B;, we define the function Caf by Caf(z)=f(ϕa(z)), where ϕa∈Aut(&#x1D53B;). The map Ca is a composition operator on L2(&#x1D53B;,dA) and A2(&#x1D53B;) for all a∈&#x1D53B;. Let ℒ(A2(&#x1D53B;)) be the space of all bounded linear operators from A2(&#x1D53B;) into itself. In this article, we have shown that CaSCa=S for all a∈&#x1D53B; if and only if ∫&#x1D53B;S˜(ϕa(z))dA(a)=S˜(z), where S∈ℒ(A2(&#x1D53B;)) and S˜ is the Berezin symbol of S.http://dx.doi.org/10.1155/2007/39819
spellingShingle Namita Das
R. P. Lal
C. K. Mohapatra
On a Class of Composition Operators on Bergman Space
International Journal of Mathematics and Mathematical Sciences
title On a Class of Composition Operators on Bergman Space
title_full On a Class of Composition Operators on Bergman Space
title_fullStr On a Class of Composition Operators on Bergman Space
title_full_unstemmed On a Class of Composition Operators on Bergman Space
title_short On a Class of Composition Operators on Bergman Space
title_sort on a class of composition operators on bergman space
url http://dx.doi.org/10.1155/2007/39819
work_keys_str_mv AT namitadas onaclassofcompositionoperatorsonbergmanspace
AT rplal onaclassofcompositionoperatorsonbergmanspace
AT ckmohapatra onaclassofcompositionoperatorsonbergmanspace