Spatiotemporal Variations and Driving Factors of Carbon Emissions Related to Energy Consumption in the Construction Industry of China
As a major contributor to energy consumption and carbon emissions, the low-carbon transformation of the construction industry is crucial for China to achieve its established carbon-emission reduction targets. Therefore, a systematic analysis of the spatial and temporal evolution trends and key drive...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/14/3700 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As a major contributor to energy consumption and carbon emissions, the low-carbon transformation of the construction industry is crucial for China to achieve its established carbon-emission reduction targets. Therefore, a systematic analysis of the spatial and temporal evolution trends and key drivers of carbon emissions in the construction industry is an important reference for the formulation of emission reduction policies in the industry and the promotion of green and low-carbon development. This study first estimated carbon emissions from direct and indirect energy consumption in China’s construction industry. Spatial and temporal variations in emissions were then analyzed using spatial autocorrelation and kernel density methods. Furthermore, an improved logarithmic mean Divisia index decomposition model, tailored to the characteristics of the construction industry, was applied to quantify the key driving factors. The results reveal that total carbon emissions follow an inverted U-shaped trend, with indirect carbon emissions—mainly from the production of cement and steel—being the dominant contributors. Emissions display a spatially uneven pattern: high in the east and south, low in the west and north, with the high-emission zone gradually expanding from the east to the central regions. Marked regional differences also exist in the evolution of emission intensity. Output intensity and energy intensity are identified as primary drivers of emissions, with their impact particularly prominent in the eastern region. These findings provide a quantitative basis and theoretical support for developing region-specific emission reduction policies, advancing the green and high-quality development of China’s construction industry. |
|---|---|
| ISSN: | 1996-1073 |