Morrey Meets Herz with Variable Exponent and Applications to Commutators of Homogeneous Fractional Integrals with Rough Kernels
We define the new central Morrey space with variable exponent and investigate its relation to the Morrey-Herz spaces with variable exponent. As applications, we obtain the boundedness of the homogeneous fractional integral operator TΩ,σ and its commutator [b,TΩ,σ] on Morrey-Herz space with variable...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2017-01-01
|
| Series: | Journal of Function Spaces |
| Online Access: | http://dx.doi.org/10.1155/2017/1908794 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We define the new central Morrey space with variable exponent and investigate its relation to the Morrey-Herz spaces with variable exponent. As applications, we obtain the boundedness of the homogeneous fractional integral operator TΩ,σ and its commutator [b,TΩ,σ] on Morrey-Herz space with variable exponent, where Ω∈Ls(Sn-1) for s≥1 is a homogeneous function of degree zero, 0<σ<n, and b is a BMO function. |
|---|---|
| ISSN: | 2314-8896 2314-8888 |