Optimization of Stope Structural Parameters for Steeply Dipping Thick Ore Bodies: Based on the Simulated Annealing Algorithm

Stope structural parameters are of great significance for the safe production of mines. To efficiently and safely mine steeply dipping ultra-thick ore bodies, the K. Kegel strength design formula and limit analysis method were used to calculate a reasonable range of stope parameters. Considering the...

Full description

Saved in:
Bibliographic Details
Main Authors: Han Du, Xuefeng Li, Xuxing Huang, Yihao Yang, Shanda Duan, Tianlong Su, Xuzhao Yuan
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/24/11597
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stope structural parameters are of great significance for the safe production of mines. To efficiently and safely mine steeply dipping ultra-thick ore bodies, the K. Kegel strength design formula and limit analysis method were used to calculate a reasonable range of stope parameters. Considering the actual mining conditions, the mechanical responses under different structural parameters were obtained through numerical simulations based on a central composite experimental design. A regression model for maximum tensile stress, maximum compressive stress, and maximum vertical displacement was established using the second-order response surface method. The regression model was then used as the objective function, and multi-objective optimization was performed using a simulated annealing algorithm to obtain the Pareto optimal solution set. Based on practical engineering needs, a stope span of 15.0 m, a pillar width of 10.0 m, and a roof thickness of 11.9 m were determined as the optimal structural parameters, achieving a balance between safety and economic efficiency.
ISSN:2076-3417