On a Constructive Approach for Derivative-Dependent Singular Boundary Value Problems

We present a constructive approach to establish existence and uniqueness of solution of singular boundary value problem -(p(x)y′(x))′=q(x)f(x,y,py′) for 0<x≤b,y(0)=a,α1y(b)+β1p(b)y′(b)=γ1. Here p(x)>0 on (0,b) allowing p(0)=0. Further q(x) may be allowed to have integrable discontinuity at x=...

Full description

Saved in:
Bibliographic Details
Main Authors: R. K. Pandey, Amit K. Verma
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2011/261963
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849691552547340288
author R. K. Pandey
Amit K. Verma
author_facet R. K. Pandey
Amit K. Verma
author_sort R. K. Pandey
collection DOAJ
description We present a constructive approach to establish existence and uniqueness of solution of singular boundary value problem -(p(x)y′(x))′=q(x)f(x,y,py′) for 0<x≤b,y(0)=a,α1y(b)+β1p(b)y′(b)=γ1. Here p(x)>0 on (0,b) allowing p(0)=0. Further q(x) may be allowed to have integrable discontinuity at x=0, so the problem may be doubly singular.
format Article
id doaj-art-e1c19066c18b443785890493476aa0bf
institution DOAJ
issn 1687-9643
1687-9651
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series International Journal of Differential Equations
spelling doaj-art-e1c19066c18b443785890493476aa0bf2025-08-20T03:20:59ZengWileyInternational Journal of Differential Equations1687-96431687-96512011-01-01201110.1155/2011/261963261963On a Constructive Approach for Derivative-Dependent Singular Boundary Value ProblemsR. K. Pandey0Amit K. Verma1Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, IndiaDepartment of Mathematics, BITS Pilani, Rajasthan, Pilani 333031, IndiaWe present a constructive approach to establish existence and uniqueness of solution of singular boundary value problem -(p(x)y′(x))′=q(x)f(x,y,py′) for 0<x≤b,y(0)=a,α1y(b)+β1p(b)y′(b)=γ1. Here p(x)>0 on (0,b) allowing p(0)=0. Further q(x) may be allowed to have integrable discontinuity at x=0, so the problem may be doubly singular.http://dx.doi.org/10.1155/2011/261963
spellingShingle R. K. Pandey
Amit K. Verma
On a Constructive Approach for Derivative-Dependent Singular Boundary Value Problems
International Journal of Differential Equations
title On a Constructive Approach for Derivative-Dependent Singular Boundary Value Problems
title_full On a Constructive Approach for Derivative-Dependent Singular Boundary Value Problems
title_fullStr On a Constructive Approach for Derivative-Dependent Singular Boundary Value Problems
title_full_unstemmed On a Constructive Approach for Derivative-Dependent Singular Boundary Value Problems
title_short On a Constructive Approach for Derivative-Dependent Singular Boundary Value Problems
title_sort on a constructive approach for derivative dependent singular boundary value problems
url http://dx.doi.org/10.1155/2011/261963
work_keys_str_mv AT rkpandey onaconstructiveapproachforderivativedependentsingularboundaryvalueproblems
AT amitkverma onaconstructiveapproachforderivativedependentsingularboundaryvalueproblems