V1848I Mutation in the Voltage-Gated Sodium Channel Confers High-Level Resistance to Indoxacarb and Metaflumizone in <i>Spodoptera exigua</i>

<i>Spodoptera exigua</i> is one of the most serious lepidopteran pests of global importance. With the intensive use of insecticides, <i>S. exigua</i> has evolved resistance to many insecticides, including the sodium channel blocker insecticides (SCBIs) indoxacarb and metaflum...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiangjie Liu, Minhui Cao, Wenjuan Mei, Xingliang Wang, Yidong Wu
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Insects
Subjects:
Online Access:https://www.mdpi.com/2075-4450/15/10/777
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<i>Spodoptera exigua</i> is one of the most serious lepidopteran pests of global importance. With the intensive use of insecticides, <i>S. exigua</i> has evolved resistance to many insecticides, including the sodium channel blocker insecticides (SCBIs) indoxacarb and metaflumizone. In this study, we investigated the role of the V1848I mutation in the voltage-gated sodium channel (VGSC) in SCBI resistance and its inheritance patterns in <i>S. exigua</i> through the development and characterization of a near-isogenic resistant strain. The AQ-23 strain of <i>S. exigua</i>, collected in 2023 from Anqing, Anhui province of China, shows 165-fold resistance to indoxacarb compared with the susceptible WH-S strain. A frequency of 44.6% for the V1848I mutation was detected in the <i>SeVGSC</i> of the AQ-23 strain, while no F1845Y mutation was found. Through repeated backcrossing and marker-assisted selection, the V1848I mutation in the AQ-23 strain was introgressed into the susceptible WH-S strain, creating a near-isogenic strain named WH-1848I. This WH-1848I strain exhibits high levels of resistance to indoxacarb (146-fold) and metaflumizone (431-fold) but remains susceptible to broflanilide and spinosad compared with the WH-S strain. Inheritance analysis revealed that SCBI resistance in the WH-1848I strain is autosomal, nonrecessive, and genetically linked to the V1848I mutation. These findings establish a clear link between the V1848I mutation and SCBI resistance in <i>S. exigua</i>, offering valuable insights for developing molecular detection tools and resistance management strategies.
ISSN:2075-4450