Prethick subsets and partitions of metric spaces

A subset $A$ of a metric space $(X,d)$ is called thick if, forevery $r>0$, there is $ain A$ such that $B_{d}(a,r)subseteqA,$ where $B_{d}(a,r)={xin Xcolon d(x,a)leq r}$. We showthat if $(X, d)$ is unbounded and has no asymptoticallyisolated balls then, for each $r>0$, there exists a partition$...

Full description

Saved in:
Bibliographic Details
Main Author: K. D. Protasova
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2012-11-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/texts/2012/38_2/115-117.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!