Prethick subsets and partitions of metric spaces
A subset $A$ of a metric space $(X,d)$ is called thick if, forevery $r>0$, there is $ain A$ such that $B_{d}(a,r)subseteqA,$ where $B_{d}(a,r)={xin Xcolon d(x,a)leq r}$. We showthat if $(X, d)$ is unbounded and has no asymptoticallyisolated balls then, for each $r>0$, there exists a partition$...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | deu |
| Published: |
Ivan Franko National University of Lviv
2012-11-01
|
| Series: | Математичні Студії |
| Subjects: | |
| Online Access: | http://matstud.org.ua/texts/2012/38_2/115-117.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|